
Document Conversion Service
User Guide

Updated: 1/2/2024

Copyright © 2011 - 2024

PEERNET Inc.

Version
3.0

i

Document Conversion Service 3.0

Table of Contents

Welcome to Document Conversion Service .. 1

Legal Notices ... 2

System Requirements .. 4

Installing Document Conversion Service Silently 6

Updating Document Conversion Service to a New Version 10

Editing Files with the DCS Editor ... 11

How to Backup and Restore Configuration Files and Profiles 16

During the Installation Process .. 17

Using the Backup and Restore Tool .. 20

Manually Backup and Restore the Files ... 35

Using the Configuration Merge Tool .. 38

Activating the Document Conversion Service ... 42

Launching the Activation Status Dialog .. 43

Entering Your Serial Number ... 46

Entering Your User Information .. 48

Validating Your Information .. 49

Manually Activating Document Conversion Service ... 50

Activation Status Results ... 54

Viewing Your Activation Status .. 56

Working With Document Conversion Service ... 57

The DCSAdmin Account .. 58

What Files Can I Convert? ... 62

The System Tray Icon .. 65

The Logging Console ... 66

Starting and Stopping the Service .. 72

Configuring Third-Party Applications Used by Document
Conversion Service ... 79

ii

Document Conversion Service 3.0

Adobe Reader for Foreign Languages ... 80

Configuring Flash for Adobe Reader .. 81

Autodesk Design Review ... 82

Setting the Ghostscript Version .. 87

Vector PDF with Office 2007 .. 89

Microsoft Outlook ... 90

Outside-In AX ... 96

Windows Imaging Component (WIC) Add-Ons and Extensions 102

Internet Explorer ... 103

Converting Files with Document Conversion Service 105

The Convert File Application .. 107

The Drop Files Converter Desktop Application .. 110

Command Line Utilities .. 116

DCSCreateFileList ... 118

DCSExtractResults .. 121

DCSCombineFiles .. 123

DCSCombineFolder ... 133

DCSConvertFolder ... 144

DCSConvertFileList .. 156

DCSConvertFile ... 165

DCSLicenseDaysLeft ... 175

The Watch Folder Service ... 176

Watch Folder Service Overview ... 180

Starting and Stopping the Watch Folder Service ... 182

Configure the Watch Folder Service .. 183

Long Path Name Support ... 201

High Performance Clustering and Fail Over Conversion .. 203

Processing Outlook and EML Mail Messages and Attachments 210

Creating Done Files to Signal Completion ... 215

Control Sort Order on File Pickup .. 216

Post-Conversion Processing .. 217

Unique File Naming and Flat Folder Structures ... 223

Skipping Files with the Passthrough Converter .. 225

Large Volume Batch Conversion Using Clustering .. 227

iii

Document Conversion Service 3.0

Large Volume Batch Conversion Using Synchronous File Pickup 229

Converting With PEERNET.ConvertUtility ... 231

Requirements ... 232

Getting Started ... 233

C# Tutorial .. 234

Visual Basic .NET Tutorial ... 239

Using the Results Object .. 244

Working With PEERNET.ConvertUtility ... 246

Passing Custom Conversion Settings .. 247

Converting a Folder of Files ... 249

Converting a List of Files .. 253

Combining a List of Files .. 257

Combining a Folder of Files ... 261

Combining Select Pages Of Each File ... 266

Converting Files with Long Path Names .. 268

Controlling Parallel Document Conversion .. 270

Controlling the Failed Results File Location ... 271

Controlling the SmartInspect Logging Files ... 274

Waiting for Document Conversion Service to be Ready to Convert .. 278

Deploying Applications ... 280

PEERNET.ConvertUtility Namespace .. 284

PNConverter .. 286

Methods ... 286

PNConvertFileInfo .. 309

Methods ... 309

Properties .. 310

PNConversionItem ... 312

Methods ... 313

Properties .. 317

PNCombineItem ... 322

Methods ... 323

Properties .. 326

PNConversionResult .. 331

Properties .. 331

PNConversionResultError .. 336

Properties .. 336

PNConversionResultMessage ... 337

iv

Document Conversion Service 3.0

Properties .. 337

PNConversionResultOutputFile ... 338

Methods ... 338

Properties .. 340

PNConversionResultOutputFileRenderedPage ... 341

Methods ... 342

Properties .. 343

PNConversionResultPrintJob ... 347

Methods ... 348

Properties .. 349

PNConversionResultPrintJobPrintedPage ... 355

Methods ... 356

Properties .. 357

PNProfile .. 361

Methods ... 361

Enumerations .. 362

PNSetting ... 363

Methods ... 363

Properties .. 364

Enumerations ... 365

PNConvertResultStatus ... 365

PNFileSortMode .. 366

PNFileSortOrder .. 366

Setting up Client-Server Conversion ... 367

Setting up the Server ... 369

Setting up the Client ... 374

Setting up a Client-Server Watch Folder .. 378

Microsoft IIS and Document Conversion Service 379

Conversion Settings .. 391

Creating and Customizing Profiles ... 396

File Extension to Converter Mapping ... 401

General Converter Options .. 405

Endorsement Options .. 409

Endorsement Formatting Codes .. 413

Word Converter Options .. 417

Excel Converter Options .. 428

v

Document Conversion Service 3.0

PowerPoint Converter Options ... 448

Adobe Reader Options ... 453

Internet Explorer Options ... 457

Ghostscript Converter Options ... 465

Image Converter Options ... 467

OutsideIn AX Options ... 471

Save ... 474

Devmode settings .. 479

Advanced File Naming ... 483

Image Options .. 489

TIFF File Format .. 494

PDF File Format ... 497

PDF Security .. 500

JPEG File Format ... 503

Processing ... 505

Advanced Features .. 514

Watermark Stamping ... 519

Advanced Configuration ... 521

Configuring Parallel Processing ... 522

Document Conversion Service Startup and Shutdown .. 524

Document Conversion Service Printer Pool ... 527

Controlling the Converters ... 530

The Application Pool .. 532

Enabling and Disabling Converters .. 540

Custom Converter Behaviour ... 542

Changing Document Conversion Service's Startup Mode ... 545

Appendix .. 547

General Application Settings .. 548

Application Factory Settings ... 551

Converter Factory Settings ... 554

vi

Document Conversion Service 3.0

Document Conversion Service 3.0

1 Welcome to Document Conversion Service

Welcome to Document Conversion Service

PEERNET Document Conversion Service is a true Windows service that comes bundled with a basic set
of converters for converting the most common types of documents, a suite of command line conversion
utilities, PEERNET.ConvertUtility.dll, a .NET library to convert files from your own code and a payload
plug-in for more advanced needs that can be called from any programming language with COM support.

Document Conversion Service comes with several pre-built sample applications as open source projects.
These samples demonstrate how to convert a multitude of document types to various image (picture)
formats such as TIFF, JPEG, Adobe® PDF, PNG and others.

The Convert File sample demonstrates using the PEERNET.ConvertUtility.dll to convert files, and the
Watch Folder service sample that watches a folder(s) on your system for files to convert and based on its
configuration it will convert the documents to the specified format.

The Document Conversion Service is easily configured through its application configuration file to control
all aspects of the conversion process, including how many documents in parallel/concurrently it will
process and which applications are available to convert documents to various formats.

2

Document Conversion Service 3.0

Welcome to Document Conversion Service

Legal Notices

Legal Notices

Copyright © 2011 - 2024 by PEERNET Inc. All rights reserved.

PEERNET is a registered trademark of PEERNET Incorporated. Microsoft and Windows are registered
trademarks of Microsoft Corporation. All other trademarks and registered trademarks are the properties of
their respective holders.

PEERNET Inc.
1365 Lords Manor Lane
Ottawa Ontario
K4M 1K3

Information in this document is accurate up to the time of publication, but does not necessarily reflect
enhancements made to PEERNET Inc.’s products, which are released without notice. The software
described in this document is furnished under a license agreement. It is against the law to copy the
software onto any medium, or to use the software for any purpose, except as specifically allowed in the
license agreement. No part of this help system may be reproduced or transmitted in any form or by any
means, electronic or mechanical, for any purpose other than the licensed operator’s personal use, without
the express written permission of PEERNET Inc.

This application and some if its associated tools and utilities use OpenSource components. You can find
the source code of their open source projects along with their respective license information in the links
below. We acknowledge these developers and are grateful for their contributions to open source.

MsgReader

Project Code: https://github.com/Sicos1977/MSGReader
Copyright © 2013-2023 Magic-Sessions
License: (MIT) https://github.com/Sicos1977/MSGReader/blob/master/license.txt

MsgKit

Project Code: https://github.com/Sicos1977/MsgKit
Copyright © 2013-2023 Magic-Sessions
License: (MIT) https://github.com/Sicos1977/MsgKit#readme

AlphaFS

Project Code: https://github.com/alphaleonis/AlphaFS
Copyright © 2008-2018 Peter Palotas, Jeffrey Jangli, Alexandr Normuradov
License: (MIT) https://github.com/alphaleonis/AlphaFS/blob/develop/LICENSE.md

ImageMagick

Project Code: https://github.com/ImageMagick/ImageMagick
Copyright © 1999 ImageMagick Studio LLC
License: https://imagemagick.org/script/license.php

AvalonEdit

Project Code: https://github.com/icsharpcode/AvalonEdit
Copyright © 2000-2014 AlphaSierraPapa for the SharpDevelop Team
License: (MIT) https://github.com/icsharpcode/AvalonEdit/blob/master/Documentation/License.html

https://github.com/Sicos1977/MSGReader
https://github.com/Sicos1977/MSGReader
https://github.com/Sicos1977/MSGReader/blob/master/license.txt
https://github.com/Sicos1977/MsgKit
https://github.com/Sicos1977/MsgKit
https://github.com/Sicos1977/MsgKit#readme
http://alphafs.alphaleonis.com/
https://github.com/alphaleonis/AlphaFS
https://github.com/alphaleonis/AlphaFS/blob/develop/LICENSE.md
http://alphafs.alphaleonis.com/
https://github.com/ImageMagick/ImageMagick
https://imagemagick.org/script/license.php
http://avalonedit.net/
https://github.com/icsharpcode/AvalonEdit
https://github.com/icsharpcode/AvalonEdit/blob/master/Documentation/License.html

Document Conversion Service 3.0

3 Welcome to Document Conversion Service

Legal Notices

Xceed Extended WPF Toolkit

Project Code: https://github.com/xceedsoftware/wpftoolkit
Copyright © 2007-2017 Xceed Software Inc.
License: (Microsoft Public License) https://github.com/xceedsoftware/wpftoolkit/blob/master/license.md

MahApps Metro

Project Code: https://github.com/MahApps/MahApps.Metro
Copyright © MahApps.Metro 2011-2018
License: (MIT) https://github.com/MahApps/MahApps.Metro/blob/develop/LICENSE

MahApps.Metro.IconPacks

Project Code: https://github.com/MahApps/MahApps.Metro.IconPacks
Copyright © MahApps.Metro 2016
License: (MIT) https://github.com/MahApps/MahApps.Metro.IconPacks/blob/dev/LICENSE

https://github.com/xceedsoftware/wpftoolkit
https://github.com/xceedsoftware/wpftoolkit/blob/master/license.md
https://mahapps.com/
https://github.com/MahApps/MahApps.Metro
https://github.com/MahApps/MahApps.Metro/blob/develop/LICENSE
https://github.com/MahApps/MahApps.Metro.IconPacks
https://github.com/MahApps/MahApps.Metro.IconPacks/blob/dev/LICENSE

4

Document Conversion Service 3.0

Welcome to Document Conversion Service

System Requirements

System Requirements

Document Conversion Service is a highly scalable product with the ability to process many documents in
parallel to take advantage of multi-CPU and multi-core systems available today.

Supported Platforms

Only 64-bit operating systems are supported. A minimum of 4GB of memory (RAM) is recommend for best
performance.

· Microsoft® Windows Server 2022

· Microsoft® Windows 11

· Microsoft® Windows Server 2019

· Microsoft® Windows Server 2016

· Microsoft® Windows Server 2012 R2

· Microsoft® Windows Server 2012

· Microsoft® Windows Server 2008 R2

· Microsoft® Windows 10 (up to version 1809)

· Microsoft® Windows 8, 8.1

· Microsoft® Windows 7

Required by Document Conversion Service:

· An account with administrative privileges to use the Document Conversion Service account. This is
set up during the installation process but can later be changed as needed through the service
properties.

· For concurrent (parallel) document processing, you are only limited by your license and the
capabilities of the computer you are running on. The performance of Document Conversion
Service is directly tied to the number of CPUs and cores available as well as the configuration
settings used to control the amount of resources that can be used by the service.

· To ensure the fidelity of your converted documents, some of the included converters use the
application used to create your document in order to do the conversion. For these converters you
will need to have installed the necessary third-party applications.

See What Files Can I Convert? for a complete list of the included converters and any required
application and versions supported by each. The most common required applications are listed
here:

o Microsoft® Office (Excel, Outlook, PowerPoint, Publisher, Visio, or Word) for Office
documents

o Adobe® Reader for PDF files

o Internet Explorer for HTML files

o Autodesk Design Review for Autodesk DWF files.

Document Conversion Service 3.0

5 Welcome to Document Conversion Service

System Requirements

o Autodesk DWG TrueView installed with Autodesk Design Review for DWG files.

o for customers with licensed versions of Outside-In ActiveX Control, you are able to utilize this
component as well to perform document conversions

o Optionally install the latest Ghostscript for improved Postscript and PDF file conversion

· The following file types do not need a third-party application and are built-in:

o Postscript and PDF

o Microsoft XPS (XML Paper Specification) files.

o Image formats including JPEG, TIFF, Windows Bitmap, ZSoft PCX and DCX, CServe
Portable Network Graphics and Graphics Interchange Format

· The following printer is occasionally required when creating vector Adobe PDF files.

o Microsoft® XPS Document Writer

6

Document Conversion Service 3.0

Installing Document Conversion Service Silently

Installing Document Conversion Service Silently

Document Conversion Service and the client PNDocConvClientSetup_3.0.exe can be installed silently
allowing the main service application to be installed on servers using push software and to allow the client
install to be bundled with custom software.

Installing Document Conversion Service Silently

Document Conversion Service can be installed silently using the following command line arguments.
When the install is not run silently, the command line arguments are ignored. The /S argument and
the PASSWORD= argument are required, all other arguments are optional.

Note

Silent installation was introduced in Document Conversion Service 2.0.018 in February 2015. Earlier
versions of the 2.0 build, and previous install versions did not have the silent install options.

pndscsetup_3.0.###.exe /S
/L=<logfile.ext>
PASSWORD="password"
[DCSUSER="domain\user"]
[LAUNCHDCS=TRUE|FALSE]
[RUNWATCHSERVICE=TRUE|FALSE]

Sample Command Lines

pndscsetup_3.0.###.exe /S PASSWORD=”password”

Runs the setup silently with no user interface. If one does not exist, a local administrative
account will be created for the user 'DCSAdmin' and using the supplied password.

If it already exists, the account will be validated and used with the supplied password. If the
password is invalid, the install will fail.

pndscsetup_3.0.###.exe /S /L="C:\PEERNET\dcslog.txt" DCSUSER=”.\MyDCSAdminUser” PASSWORD=”password”

Runs the setup silently with no user interface. The account must already exist. It is validated
using the supplied password. If the password is invalid, the install will fail. A log of the install,
dcslog.txt, is created in C:\PEERNET. The directory must already exist.

pndscsetup_3.0.###.exe /S DCSUSER=”DOMAIN\MyUser” PASSWORD=”password” LAUNCHDCS=TRUE

Runs the setup silently with no user interface. The domain account MyUser will be validated
using the supplied password. If the password is invalid, the install will fail. The install will launch
Document Conversion Service at the end of the installation step.

Document Conversion Service 3.0

7 Installing Document Conversion Service Silently

/S - Silent Install

This will run the installation silently with no user interface (no setup wizard). Installing silently requires
that the PASSWORD= variable be provided. When used without the DCSUSER= variable, the
password is used to create or validate an existing DCSAdmin account. If a DCSUSER variable is
provided, the password is used to validate that account. If the accounts cannot be validated, or the
PASSWORD information is not provided the setup will terminate.

/L - Create a Logging File

Pass in a fully qualified path to a filename to create a logging file.

PASSWORD="password"

The install requires a user account with administrative privileges to initialize the services and
configure for client-server conversion. A password must be supplied to create the DCSAdmin account,
or validate the account if an existing one is used. If the account cannot be validated, or the password
variable is not supplied, the setup will terminate.

LAUNCHDCS=TRUE|FALSE

This argument is optional and defaults to FALSE. If passed as TRUE then the setup will automatically
start Document Conversion Service when the install is complete.

DCSUSER="domain\user"

This argument is optional. If not provided we default to our local account DCSAdmin

The services and configuration for Document Conversion Service require a user account, local or
domain-level, that has administrative privileges. We normally recommend that you let us create and
use our local account DCSAdmin.

If you cannot use this account you can specify a different user through this argument. If using a
domain account, you need to specify the domain and user name. The install process also needs to be
able to validate the account. The setup will fail if the account cannot be validated. If you are using a
different local account, specify the local account using the dot syntax for local, ".\MyLocalUser".

RUNWATCHSERVICE=TRUE|FALSE

This argument is optional and defaults to FALSE. If passed as TRUE then the setup will automatically
start the Watch Folder Service when the install is complete.

8

Document Conversion Service 3.0

Installing Document Conversion Service Silently

Installing PNDocConvClientSetup_3.0.exe Silently

This client software can be installed as a separate step from your application, called from your
installation, or you can bundle it with your own install by using command line arguments to run the
install silently.

There are two types of setup that can be controlled from the command line - BASIC, and FULL. The
BASIC setup is the same as the Minimum install and only installs the required components for remote
conversion in a client-server environment. The FULL setup is the same as a Complete install and
includes the Watch Folder Service and sample code, the command line conversion tools and all
additional sample code.

When the client install is not run silently, the command line arguments are ignored.

PNDocConvClientSetup_3.0.exe /S
PASSWORD="password"
[SETUPTYPE=BASIC|FULL]
[DCSUSER="domain\user"]

Sample Command Lines

PNDocConvClientSetup_3.0.exe /s PASSWORD=”password”

Runs the basic client setup silently with no UI. If one does not exist, a local administrative
account will be created for the user 'DCSAdmin' and using the supplied password.

If it already exists, the account will be validated with the supplied password. If the password is
invalid, the install will fail.

PNDocConvClientSetup_3.0.exe /s SETUPTYPE=BASIC DCSUSER=”.\MyLocalUser” PASSWORD=”password”

Runs the basic client setup silently with no UI.

The local account MyLocalUser will be validated with the supplied password. If the password is
invalid, or the account not exist, the install will fail.

PNDocConvClientSetup_3.0.exe /s SETUPTYPE=FULL DCSUSER=”DOMAIN\MyUser” PASSWORD=”password”

Runs the full client setup silently with no UI.

The domain account MyUser will be validated with the supplied password. If the password is
invalid, or the account not exist, the install will fail.

Document Conversion Service 3.0

9 Installing Document Conversion Service Silently

/S - Silent Install

This will run the installation silently with no wizard. If no SETUPTYPE is specified, then a BASIC
install is done.

The client install also requires that the PASSWORD= variable be provided. When used without the
DCSUSER= variable, the password is used to create or validate an existing DCSAdmin account. If not
provided the setup will terminate.

PASSWORD="password"

The client install requires a user account with administrative privileges to initialize the services and
configure for client-server conversion. A password must be supplied to create the account, or validate
the account if an existing one is used. If the account cannot be validated the setup will terminate.

SETUPTYPE=BASIC|FULL

Choose the setup type - BASIC or FULL. The BASIC setup only installs the required components for
remote conversion in a client-server environment. The FULL setup will also install the Watch Folder
Service and sample code, the command line conversion tools and all additional sample code.

When this argument is not specified, a BASIC setup is installed.

DCSUSER="domain\user"

The services and configuration for client-server conversion require a user account, local or domain-
level, that has administrative privileges. We normally recommend that you let us create and use our
local account DCSAdmin.

If you cannot use this account you can specify here a different user. If using a domain account, you
need to specify the domain and user name. The install process also needs to be able to validate the
account. The setup will fail if the account cannot be validated. If you are using a different local
account, specify the local account using the dot syntax for local, ".\MyLocalUser".

10

Document Conversion Service 3.0

Updating Document Conversion Service to a New Version

Updating Document Conversion Service to a New
Version

When upgrading Document Conversion Service to a new version, (i.e. upgrading from version 2.0 to 3.0),
or updating within the current version (i.e. updates from version 3.0.001 to 3.0.002), these updates and
upgrades are done in-place and will set all application settings back to the installation defaults.

If you have made any changes to the settings they will need to be reapplied. This includes changes to the
following:

· The Document Conversion Service configuration file

· The Watch Folder Service configuration file

· Any changes you made to the default conversion profiles, or any new conversion profiles you
created. Conversion profiles are used by the command line tools, the PEERNET.ConvertUtility.dll
and the Convert File sample programs.

The section, How to Backup and Restore Configuration Files and Profiles shows how to backup and
restore these files when updating or upgrading the software.

Document Conversion Service 3.0

11 Editing Files with the DCS Editor

Editing Files with the DCS Editor

Starting with Document Conversion Service 3.0.017, a DCS Editor is included to allow for easy editing of
both DCS configuration files and Watch Folder configuration files, as well as conversion profiles.

The editor offers colored syntax highlighting, error checking for syntax errors when files are loaded or
saved, and basic validation when editing the configuration files or conversion profiles.

The start menu shortcuts for editing the DCS and Watch Folder configuration files, and conversion files
now use this tool instead of Notepad.

12

Document Conversion Service 3.0

Editing Files with the DCS Editor

Opening Files

The editor is tailored for interacting with the DCS configuration file, the Watch Folder
configuration file and the conversion profiles. The Open button presents a flyout on the left
allowing you to choose editing one of these files. Clicking on the left arrow icon or away from
the flyout will dismiss it.

Files are validated for syntax errors upon opening and any errors are displays as shown in
Validating the Files below.

Document Conversion Service 3.0

13 Editing Files with the DCS Editor

Find and Replace

One of the most common editing tasks is to enable or disable individual document converters
in the DCS configuration file, based on the file types you need to convert. The editor includes
a Find and Replace Tool that allows for searching throughout the files. Selecting a section of
text before opening the find and replace window will fill in the search text with the selected
text on the Find tab.

The Replace tab allows you to do a global find and replace of all occurrences of the string in the
document.

14

Document Conversion Service 3.0

Editing Files with the DCS Editor

Validating the Files

The editor can validate the file for syntax errors as well as checking that the configuration files
and conversion profiles contain their required respective sections. The color syntax
highlighting also provides visual cues if the file syntax is incorrect.

You can validate a file at any time using the Validate button. Files are also validated upon
opening and saving.

If an error is encountered, the error information is shown in an error flyout at the bottom of the screen, and
if possible, the file is scrolled to the line number that contains the error. The error flyout can be dismissed
by clicking above it, or on the down arrow icon on the left side of the flyout.

You can display the error message again by clicking on the warning symbol in the lower left corner.

If the file contains valid syntax, the following success flyout is displayed and automatically dismissed.

Document Conversion Service 3.0

15 Editing Files with the DCS Editor

Saving the Files

When saving, the files are also validated for syntax and correct sections. When the file is
correct, it is saved and the following saved flyout message is displayed and automatically
dismissed.

When the file is incorrect a warning message is displayed. Selecting No will return to the editor with the
error message displayed in the error flyout at the bottom of the editor allowing you to fix the error.

Configuration files and conversion profiles with syntax errors will cause DCS, Watch Folder and the
conversion utilities to not work correctly.

16

Document Conversion Service 3.0

How to Backup and Restore Configuration Files and Profiles

How to Backup and Restore Configuration Files and
Profiles

The configuration files for Document Conversion Service, Watch Folder Service and any edited
conversion profiles need to be backed up and restored when:

· you are upgrading to a newer version of Document Conversion Service, i.e updating from version
2.0 to 3.0

· you are installing a minor version update of Document Conversion Service, i.e. updating from
version 3.0.001 to 3.0.002

· you are moving the current Document Conversion Service install to a new server

· you want to keep a backup copy saved for future reference

Updates and upgrades are done in-place and will set all application settings back to the installation
defaults. If you have made any changes to the configuration files or profiles, they will need to be saved and
the changes reapplied. There are a few ways to do this.

· During the Installation Process - Beginning with Document Conversion Service 3.0.017, when
upgrading a previous version, the install program includes options to create a backup zip file
containing the Document Conversion Service configuration file, the Watch Folder configuration file
and the conversion profiles. At the end of the upgrade process, the contents of the backup zip file
can be restored using the new DCS Backup and Restore utility

· Using the Backup and Restore Tool - This tool can be used to create a backup as well as restore a
backup created either this tool or by the installation program. For users prior to version 3.0.017, a
stand-alone copy of the DCS Backup and Restore utility can be downloaded by contacting
PEERNET Support

· Manually Backup or Restore the Files - the configuration files and profiles can always be backed up
and restored manually.

· Using the Configuration Merge Tool - merge manually saved DCS and Watch Folder configuration
files or conversion profiles through a visual GUI with preview, syntax highlighting and error
reporting.

mailto:support@peernet.com

Document Conversion Service 3.0

17 How to Backup and Restore Configuration Files and Profiles

During the Installation Process

During the Installation Process

Beginning with Document Conversion Service 3.0.017, updating or removing an existing installation now
includes an option to create a backup zip file containing the Document Conversion Service configuration
file, the Watch Folder configuration file and the conversion profiles.

Create a Backup During Installation

This option is shown when running the install for Document Conversion Service 3.0.017 or later when
upgrading over an existing installation, or when running the install to remove the current installation.

To skip creating a backup file, uncheck all three options.

The file is created in the Documents folder by default but can be stored in a different location if desired.
The backup file is named using the currently installed version number and the current date and time. From
this point, click Next to continue with the installation.

18

Document Conversion Service 3.0

How to Backup and Restore Configuration Files and Profiles

During the Installation Process

Restore a Backup at the End of Installation

When upgrading older versions, the install is preset to launch the DCS Backup and Restore utility at the
end of the installation process if you have created a backup zip file in an earlier step of the install.

If you are installing on a new machine, the option to restore any saved backup zip will not be enabled by
default. If you have a backup zip file from an earlier install or another computer, check this option to run
the utility and load your saved file.

Document Conversion Service 3.0

19 How to Backup and Restore Configuration Files and Profiles

During the Installation Process

When launched, the DCS Backup and Restore tool will automatically open the backup zip file created as
part of the installation upgrade process. See the next section, Using the Backup and Restore Tool for
steps on restoring your files.

20

Document Conversion Service 3.0

How to Backup and Restore Configuration Files and Profiles

Using the Backup and Restore Tool

Using the Backup and Restore Tool

The DCS Backup and Restore utility can backup or restore your Document Conversion Service
configuration file, Watch Folder Service configuration file and any created or editing conversion profiles.

When backing up the files, it creates a backup zip file containing the configuration files and conversion
profiles you select to back up. The restore process will use the created zip file to merge the edited
configuration files with the new ones, and update the conversion profiles collection with the saved ones.

Available starting with Document Conversion Service 3.0.017, users running earlier 3.0 versions can get
access to the tool as a stand-alone executable by contacting PEERNET Support. This tool does not work
with version 2.0 or earlier.

To launch the DCS Backup and Restore tool, go to Start - Document Conversion Service 3.0 – DCS
Backup and Restore.

The tool detects what installed version of Document Conversion Service you are running and allows you to
choose to:

· backup your DCS configurations and profiles

· restore your DCS configuration from a saved backup

mailto:support@peernet.com

Document Conversion Service 3.0

21 How to Backup and Restore Configuration Files and Profiles

Using the Backup and Restore Tool

Backing up Your Configuration Files and Profiles

To backup your configuration files and conversion profiles, select Backup my DCS configurations and
profiles.

The first step is to choose which items to back up. The default is to back up both the DCS configuration
file and Watch Folder configuration file as well as all conversion profiles. If you are unsure which of those
files you may have modified, leave everything checked. If you know you have only made changes to
specific files, you can choose to only save those files.

22

Document Conversion Service 3.0

How to Backup and Restore Configuration Files and Profiles

Using the Backup and Restore Tool

If you know you have only modified and/or added certain conversion profiles, use the Choose which
profiles to backup option to only backup certain profiles.

Document Conversion Service 3.0

23 How to Backup and Restore Configuration Files and Profiles

Using the Backup and Restore Tool

Next, choose where to save and how to name the backup zip file. You can let the tool auto-name the file
and save it in the Documents folder, or provide your own name and location.

24

Document Conversion Service 3.0

How to Backup and Restore Configuration Files and Profiles

Using the Backup and Restore Tool

Review your selections before starting the backup. Any included item will have a green check mark. The
backup location and file name are also shown. Click Start Backup to save the backup zip file.

Document Conversion Service 3.0

25 How to Backup and Restore Configuration Files and Profiles

Using the Backup and Restore Tool

The Backup screen shows the progress as the backup file is created.

When complete, you can view your new backup file using the Show Backup button. It will open a
Windows Explorer window with the file highlighted.

If you missed a file, you can create a new backup using the Start Over button.

Close the tool by clicking Exit.

26

Document Conversion Service 3.0

How to Backup and Restore Configuration Files and Profiles

Using the Backup and Restore Tool

Restoring your Configuration Files and Profiles

If you are running this tool manually, such as when migrating the settings to a new computer, choose
Restore my DCS configuration from saved files to start a restore.

Use the Browse button find and load your backup zip file. If you are running the DCS Backup and Restore
utility from the installation program, and have created a backup zip file as part of the install process, this
tool will open with that file already loaded.

The file will be validated and show a summary of which files are contained in the backup zip file. Click
Next.

Document Conversion Service 3.0

27 How to Backup and Restore Configuration Files and Profiles

Using the Backup and Restore Tool

The next step is to choose which items to restore. Items that are not in the backup zip file will be disabled
and cannot be selected. For instance, if the backup zip file only contained a DCS configuration file and
conversion profiles, the Watch Folder Configuration option would be disabled.

28

Document Conversion Service 3.0

How to Backup and Restore Configuration Files and Profiles

Using the Backup and Restore Tool

If there are conversion profiles in the backup, and you don't want to restore all of them, use the Choose
which profiles to restore option to only restore certain profiles.

Document Conversion Service 3.0

29 How to Backup and Restore Configuration Files and Profiles

Using the Backup and Restore Tool

Review your selections before starting the backup. Any included item will have a green check mark. Click
Start Restore to begin restoring the selected files from the chosen backup zip file.

30

Document Conversion Service 3.0

How to Backup and Restore Configuration Files and Profiles

Using the Backup and Restore Tool

The first step of the restore is to merge any changed or added settings in the saved DCS configuration file
with the new file just installed. This allows you to maintain any of your changes to this file while also
gaining access to any new features that were added. This step is skipped if the DCS configuration file was
not selected to be restored.

The results of the merge, whether successful or with errors, are listed on the screen.

Click the Next button to review the successfully merged file, or to edit the file if any errors occurred.

Document Conversion Service 3.0

31 How to Backup and Restore Configuration Files and Profiles

Using the Backup and Restore Tool

Preview and edit your merged DCS configuration file from this screen. Any changes made in the editor are
validated before moving to the next step. Click Accept Changes when you are done.

If any errors were found, information about the error is displayed at the top of the screen. This allows you
to find and fix syntax and other errors easily.

32

Document Conversion Service 3.0

How to Backup and Restore Configuration Files and Profiles

Using the Backup and Restore Tool

Next, the same steps are done using the Watch Folder configuration file, if this file was selected to be
restored. As with the DCS configuration file, the results of the merge, whether successful or with errors,
are listed on the screen.

Click the Next button to review the successfully merged Watch Folder configuration file, or to edit it if any
errors occurred.

Document Conversion Service 3.0

33 How to Backup and Restore Configuration Files and Profiles

Using the Backup and Restore Tool

Preview and edit your merged Watch Folder configuration file from this screen. Click Accept Changes
when you are done.

34

Document Conversion Service 3.0

How to Backup and Restore Configuration Files and Profiles

Using the Backup and Restore Tool

The last step in the restore process is to copy the merged configuration files, as selected, and any
selected profiles into their respective locations. Only the configuration files are merged with their newer
copies, conversion profiles are a direct copy of the saved profiles.

Document Conversion Service 3.0

35 How to Backup and Restore Configuration Files and Profiles

Manually Backup and Restore the Files

Manually Backup and Restore the Files

The DCS configuration, Watch folder configuration and conversion profiles can also be backed up by
copying the files to a saved location and then visually merging any changes after.

The DCS Configuration File

Backing up the File

1. Go to Start – All Programs – Document Conversion Service 3.0– Edit DCS Configuration File
to open the configuration file. Older versions of DCS will open this in Notepad, while newer
versions will open in the DCS Editor.

2. Once open, save a copy of the file in a safe location.

Restoring the File

After you have updated or upgraded, always check the new configuration file for changes and new settings
that may have been introduced with the new update or upgrade.

If there have been no new settings added to the configuration file, then you can simply copy your saved
DCS configuration file to C:\Program Files\PEERNET Document Conversion Service 3.0\Core.

If there have been changes, and you wish to have access to the new settings, you can automatically
merge the old and new DCS configuration file and see a preview by Using the Configuration Merge Tool.

To manually merge the settings by visually comparing the files, do the following:

1. Go to Start – All Programs – Document Conversion Service 3.0 – Edit DCS Configuration
File to open the new file. Older versions of DCS will open this in Notepad, while newer versions
will open in the DCS Editor.

2. Open the original file you saved. This can be opened in Notepad, or another text editor of your
choice.

3. Compare the two files and copy your changes from the old DCS configuration file to the new file.

4. Save your file. If you are using the DCS Editor, the file will be validated for syntactical errors
before saving.

36

Document Conversion Service 3.0

How to Backup and Restore Configuration Files and Profiles

Manually Backup and Restore the Files

The Watch Folder Configuration File

Backing up the File

1. Go to Start – All Programs – Document Conversion Service 3.0 – Watch Folder – Configure
Watch Folder Settings to open the configuration file. Older versions of DCS will open this in
Notepad, while newer versions will open in the DCS Editor.

2. Once open save a copy of the file in a safe location.

Restoring the File

After you have updated or upgraded, always check the new Watch Folder configuration file for changes
and new settings that may have been introduced with the new update or upgrade.

If there have been no new settings added to the configuration file, then you can just copy the Watch Folder
configuration file that you had saved to C:\Program Files\PEERNET Document Conversion Service
3.0\Tools\Watch Folder Service.

If there have been changes, and you wish to have access to the new settings, you can automatically
merge and preview the old and new Watch Folder configuration file and see a preview by Using the
Configuration Merge Tool.

To manually merge the settings by visually comparing the files, do the following:

1. Go to Start – All Programs – Document Conversion Service 3.0 – Watch Folder – Configure
Watch Folder Settings to open the new configuration file. Older versions of DCS will open this in
Notepad, while newer versions will open in the DCS Editor.

2. Open your original, modified file you saved. This can be opened in Notepad, or another text editor
of your choice.

3. Compare the two files and copy your changes from the old Watch Folder configuration file to the
new file.

4. Save your file. If you are using the DCS Editor, the file will be validated for syntactical errors
before saving.

Document Conversion Service 3.0

37 How to Backup and Restore Configuration Files and Profiles

Manually Backup and Restore the Files

The Conversion Profiles

The conversion profiles are used by the sample programs, the command line utilities, and by the
PEERNET.ConvertUtility.dll .NET assembly.

If you have modified any of the sample profiles that DCS installs by default, or if you have added your own,
you should back up the contents of this folder before upgrading.

Backing up the Profiles

1. Open the profiles folder by going to Start – All Programs – Document Conversion Service 3.0
– Samples – Open Conversion Profiles Folder.

2. All files in this folder are conversion profiles. Copy all of the profiles from here and save them in a
safe location.

Restoring the Profiles

After you have updated or upgraded, always check any edited profiles, or default profiles that you are
using, against the new ones for any changes and new settings that may have been introduced with the
new update or upgrade.

If there have been no new settings added to the file, then you can simply copy your saved profiles back to
the profiles location at Start – All Programs – Document Conversion Service 3.0 – Samples – Open
Conversion Profiles Folder.

If there have been changes, and you wish to have access to the new settings, you can automatically
merge the old and new profile and see a preview by Using the Configuration Merge Tool.

To manually merge the settings in individual profiles by visually comparing the files, do the following:

1. Go to Start – All Programs – Document Conversion Service 3.0 – Edit Conversion Profiles to
open the new profile in the DCS Editor.

2. From the editor's open flyout, click on Choose Conversion Profile to open the new profile you
wish to edit.

3. Open the original, modified file you saved. This can be opened in Notepad, or another text editor
of your choice.

4. Compare the two files and copy your changes from the old profile to the new profile.

5. Save your file. If you are using the DCS Editor, the file will be validated for syntactical errors
before saving.

38

Document Conversion Service 3.0

How to Backup and Restore Configuration Files and Profiles

Using the Configuration Merge Tool

Using the Configuration Merge Tool

When manually restoring configuration files or conversion profiles, the DCS Configuration and Profile
Merge tool can be used to merge your saved configuration files and conversion profiles with the new
installed files.

Select the new configuration or profile, and then select the matching older, saved file you want to copy any
settings from. Select Start Merge to begin merging the files.

Document Conversion Service 3.0

39 How to Backup and Restore Configuration Files and Profiles

Using the Configuration Merge Tool

The progress of the merge is shown as the files are evaluated and combined. Click Preview File to see
the results of a successful merge.

40

Document Conversion Service 3.0

How to Backup and Restore Configuration Files and Profiles

Using the Configuration Merge Tool

The preview allows you to verify that all settings have been copied over. The file that will be updated
shown at the top of the screen. Click Save Merged File to update the file, or Save Copy to create a copy
of the merged file.

Document Conversion Service 3.0

41 How to Backup and Restore Configuration Files and Profiles

Using the Configuration Merge Tool

If any errors are found during the merge, they are listed first on the merge progress screen. To edit the
merged file to fix the errors, click Edit File.

When editing a merged file with errors, the error information is shown at the top of the screen, and the file
scrolled to the closest location of the error. The sample shown below is missing a quotation mark on line
16. This causes a syntax error when starting the next line. Fix the errors and click Save and Merge Again
to repeat the process until there are no syntax errors on the merged file and it merges successfully.

42

Document Conversion Service 3.0

Activating the Document Conversion Service

Activating the Document Conversion Service

Document Conversion Service is installed as a 30-day trial by default.

If you have purchased a copy of Document Conversion Service, you will receive a serial number as part of
your order confirmation. Upon receipt of your serial number follow the steps outlined in the next sections to
activate your product.

Document Conversion Service 3.0

43 Activating the Document Conversion Service

Launching the Activation Status Dialog

Launching the Activation Status Dialog

The Activation Status dialog is used to license your product or display your current license status.

To launch the Activation Status dialog, go to Start - All Programs/Apps - Document
Conversion Service 3.0 - License....

44

Document Conversion Service 3.0

Activating the Document Conversion Service

Launching the Activation Status Dialog

Starting the Activation Process

The Activation Status dialog displays different options when your trial period has expired than when
you are still in trial mode.

When you have time remaining in your trial

When you have time remaining in your trial period you will see the dialog below.

To begin the activation process now, select the "I have a serial number and want to activate my copy"
button. This will launch the Activation Wizard, which will guide you step-by-step through the
activation process.

· I have a serial number and want to activate my copy - Select this option if you have your serial
number and want to activate your product. When the product is activated, the evaluation watermark
is no longer placed on created files.

· I do not have a serial number and want to purchase - Selecting this option will take you to our
on-line store where the product can be purchased. Once purchased, an order confirmation
notification containing your serial number will be sent to you by email.

· I want to continue evaluating - Selecting this option allows you to evaluate the product. An
evaluation watermark will be placed on all files created.

If your evaluation period has expired

When your evaluation period is over, you will see the dialog below.

Document Conversion Service 3.0

45 Activating the Document Conversion Service

Launching the Activation Status Dialog

To begin the activation process now, select the "I have a serial number and want to activate my copy"
button. This will launch the Activation Wizard, which will guide you step-by-step through the
activation process.

· I have a serial number and want to activate my copy - Select this option if you have your serial
number and want to activate your product. When the product is activated, the evaluation watermark
is no longer placed on created files.

· I do not have a serial number and want to purchase - Selecting this option will take you to our
on-line store where the product can be purchased. Once purchased, an order confirmation
notification containing your serial number will be sent to you by email.

46

Document Conversion Service 3.0

Activating the Document Conversion Service

Entering Your Serial Number

Entering Your Serial Number

To activate your product you need to enter in the serial number that was included with your order
confirmation email. You can also find your serial number in your on-line store account as well.

Enter the serial number into the box on the screen. If you copy your entire serial number from your email
and then return to this dialog it will automatically be filled in to the box.

Entering Serial Numbers

The serial number is case sensitive and it is important to type the serial number exactly as it is
received. Be sure not to leave any spaces before or after the serial number when typing or pasting,
and note that the serial number ends with a series of hexadecimal characters (0-9,A-F).

Document Conversion Service 3.0

47 Activating the Document Conversion Service

Entering Your Serial Number

Activating Without an Internet Connection

If you are having difficulty connecting to the internet, or do not want to activate over the internet, you
can choose to manually activate the product by clicking the "I do not have an internet connection and
will activate manually" check box on this screen.

Manual activation does not require an Internet connection on the computer the software is installed on,
but it does require that you have the ability to email an encrypted file to PEERNET to authenticate.

We will return the authenticated file to you, which you then import using the Activation Wizard to
complete the activation process. These files are processed by PEERNET's technical staff from 09h00
to 17h00, Monday to Friday, Eastern Standard Time.

When activating over the internet, the Activation Wizard will attempt to validate an internet
connection, and will prompt with the choice to manually activate it if it cannot connect.

Click the Cancel button to begin the manual activation process, or the Retry button to try connecting
to the internet again.

Note

If you suspect your firewall or anti-virus software has blocked the connection, adjust your firewall or
anti-virus software and click the Retry button.

48

Document Conversion Service 3.0

Activating the Document Conversion Service

Entering Your User Information

Entering Your User Information

The next screen asks for your contact information. Your Name and Organization information is
automatically picked up from your system settings when possible. The information in these fields can be
changed if required.

Customer Privacy

You cannot continue if either the Name or the Email Address field is left blank. Email addresses
entered here are only used by PEERNET to notify you of updates to your product or other products
that may interest you. We will never rent or sell our customer's information to third parties.

Document Conversion Service 3.0

49 Activating the Document Conversion Service

Validating Your Information

Validating Your Information

This screen summarizes the information entered in the previous screens. The Back button can be used
to return to the previous screens and change any information if needed.

If you are activating your product over the internet, skip the next section and go to Activation status results.

If you do not have an internet connection and need to manually activate your product go to the manual
activation export screen

50

Document Conversion Service 3.0

Activating the Document Conversion Service

Manually Activating Document Conversion Service

Manually Activating Document Conversion Service

In most cases, you will not have to activate your product manually. This only happens when Document
Conversion Service is installed on a computer that has no access to the internet, or the computer is
configured such that the user cannot access the internet. This can also happen if a firewall program or
anti-virus software blocks our attempt to connect with our license server.

If you do have to activate manually, you will need to follow the steps below. Please note that these files
(PNProdID files) are authorized during business hours, which are 09h00 to 17h00, Monday through Friday,
Eastern Standard Time (excluding statutory holidays).

1. Use the Activation Wizard to create the encrypted file, PNProdID.txt.

2. Email the file to peernet@peernet.com to be activated. For computers with no email capability,
you can save the file to a shared network drive, or use an external storage device such as a USB
flash drive (also known as thumb drives), or a MicroSD storage card to copy the file to a computer
with email capabilities.

3. A file named PNProdAU.txt will be emailed back to you. Copy this file back to the computer
where Document Conversion Service is installed and restart the Activation Wizard to
complete the license activation.

Exporting the PNProdID.txt file

To create the file click the "Create the PNProdID.txt product identification file" button in the middle of
the screen.

mailto:peernet@peernet.com

Document Conversion Service 3.0

51 Activating the Document Conversion Service

Manually Activating Document Conversion Service

A common Windows save dialog box will appear prompting you to choose where to save the
PNProdID.txt product identification file. Save this file in an easy to remember location, like your
Desktop or your Documents folder.

You need to email this file to peernet@peernet.com. For computers with no email capability, you can
save the file to a shared network drive, or use an external storage device such as a USB flash drive or
a MicroSD storage card to copy the file to another computer.

mailto:peernet@peernet.com

52

Document Conversion Service 3.0

Activating the Document Conversion Service

Manually Activating Document Conversion Service

Importing the PNProdAU.txt file

When you have received the product authentication file PNProdAU.txt from PEERNET Inc., you
then need to save the file in an easy to remember location, like your Desktop or your Documents
folder. If you need to move the authentication file back to the computer where Document Conversion
Service is installed, do so now.

On the computer where Document Conversion Service is installed, restart the Activation Wizard
by following the steps outlined in Launching the Activation Status dialog. The Activation Wizard
will automatically start at the import screen.

Press the "Import the PNProdAU.txt product authorization file" button in the middle of the screen.

Document Conversion Service 3.0

53 Activating the Document Conversion Service

Manually Activating Document Conversion Service

The common Windows open dialog box will appear. Locate where you saved the PNProdAU.txt file
you received from PEERNET and click the Open button to import the file.

The authentication file is verified and you are automatically moved to the Activation Status Results
screen.

54

Document Conversion Service 3.0

Activating the Document Conversion Service

Activation Status Results

Activation Status Results

This screen displays your activation status. Once the product is successfully activated, the Activation
Status field will display your status as Activated.

If an error occurred during activation it is displayed in the Activation Status field, such as the following error
message that occurs if you have exceeded your license activations.

Document Conversion Service 3.0

55 Activating the Document Conversion Service

Activation Status Results

When you have used all your license activations, you will not be able to use the product on this computer
until additional activations have been purchased.

1. Close the Activation Wizard and restart the activation process as explained in the section
Launching the Activation Status dialog.

2. Choose "I do not have a serial number and want to purchase" to go to our on-line store where
addition licenses can be purchased.

Note

If you are moving your license to a new computer, or if you have to re-install the software on your
computer due to a crash, please contact PEERNET Sales at peernet@peernet.com with your
current serial number for assistance.

56

Document Conversion Service 3.0

Activating the Document Conversion Service

Viewing Your Activation Status

Viewing Your Activation Status

To view your activation status, launch the Activation Wizard by going to All Programs –
Document Conversion Service 3.0 – License... from the Windows Start menu. See Launching
the Activation Status dialog section for detailed instructions.

If you have purchased the product, the Status field will display Activated, and your serial number, the type
of license you have, and your name, organization and email address are also displayed.

The Change/Renew License... button can be used to change your license or renew your license
subscription. For example, you would use this button when you receive a new subscription key, or when
upgrading from a Level I license to a Level V license within the same product version. It cannot be used
to upgrade between product versions.

Document Conversion Service 3.0

57 Working With Document Conversion Service

Working With Document Conversion Service

Document Conversion Service consists of the following components:

· A system tray application that provides quick access to common tasks.

· The logging console used to monitor Document Conversion Service when it is running.

· A user account, DCSAdmin, with administrative privileges, that can optionally be created during
application installation. This account, or another pre-existing account with administrative privileges
is required to run Document Conversion Service.

· The Document Conversion Service, the main application that performs the conversion, which
includes:

o A basic set of converters are included to cover the conversion of the most commonly used
document formats.

o A suite of command line utilities for converting files and folders that can be called from the
command line, in batch files, as scheduled tasks, or from any application that can call an
external program.

o A .NET library, PEERNET.ConvertUtility.dll for converting files and folders that is callable from
any language; C++, C#, VB, PowerShell, and others.

o A default payload plug-in for converting files; this payload can be called from any
programming language with COM support.

o Advanced configuration through its application configuration file.

· PEERNET Document Conversion Service Monitor 1.0, the Windows service that runs and
monitors the Document Conversion Service.

· Document Conversion Service 3.0 printer used by the Document Conversion Service.

58

Document Conversion Service 3.0

Working With Document Conversion Service

The DCSAdmin Account

The DCSAdmin Account

Document Conversion Service requires a user account with administrative privileges to run the underlying
conversion services. This account can be created as a local account, or a pre-existing account can be
chosen to be used during the application installation. This account is used by the PEERNET Document
Conversion Service Monitor 1.0 service as well as the included Watch Folder Service sample.

We recommend creating and using the DCSAdmin for your conversion service. This provides you with a
clean environment in which to run your document conversions and ensures that all native applications
used by the converters will be automatically configured correctly for use with Document Conversion
Service.

Creating the DCSAdmin During Installation

During installation you are prompted to create the DCSAdmin account or to choose an already existing
account. You will be asked to create or supply the existing password on the next screen.

If you are planning on converting files remotely using DCOM, as outlined in the section Converting on a
Remote Computer (DCOM), you will need to choose the second radio button and supply an account on
the domain with administrative rights. If you have created, or are using, a Domain Group for the purposes
of granting DCOM permissions, this user needs to be part of that group.

Document Conversion Service 3.0

59 Working With Document Conversion Service

The DCSAdmin Account

If you forget the the DCSAdmin password.

If you are upgrading versions or re-installing Document Conversion Service and have forgotten the
original password you used when creating the DCSAdmin, you will need to do one of the following:

Re-install Document Conversion Service

This is the simplest method, but care must be taken to backup any configuration changes you may
have made.

1. Stop any running Document Conversion Service services. This includes the Watch Folder
Service if you are using it.

a. See Starting and Stopping the Watch Folder Service to stop the watch folder service.

b. Stop the Document Conversion Service as outlined in Starting and Stopping the Service.

c. If you have any of your own services or programs, stop those as well.

2. Uninstall Document Conversion Service, either through Add/Remove Programs in the
Control Panel or by going to Start - All Programs - PEERNET Document
Conversion Service 3.0 - Uninstall Document Conversion Service 3.0.

3. Go to Control Panel - System and Security - Administrative Tools and select
Computer Management.

a. Under the Local Users and Groups item, select Users and delete the existing
DCSAdmin account. It will warn you about deleting an account with
administrative access, but continue with the deletion as we will be re-creating
this account when Document Conversion Service is installed.

4. Re-install Document Conversion Service and re-create the DCSAdmin as part of
the install.

Delete the Existing DCSAdmin and Create a New One Manually.

This allows you to keep any configuration changes you have made to Document Conversion Service.
When doing this step you will also need to reset the logon account for the PEERNET Document
Conversion Service Monitor 1.0 service and the Watch Folder Service, if you are using it.

1. Stop any running Document Conversion Service services. This includes the Watch Folder
Service if you are using it.

a. See Starting and Stopping the Watch Folder Service to stop the watch folder service.

b. Stop the Document Conversion Service as outlined in Starting and Stopping the Service.

c. If you have any of your own services or programs, stop those as well.

2. Go to Control Panel - Administrative Tools and select Computer Management.

3. Under the Local Users and Groups item, select Users and delete the existing DCSAdmin
account. It will warn you about deleting an account with administrative access, but continue
with the deletion as we will be re-creating this account in the next step.

60

Document Conversion Service 3.0

Working With Document Conversion Service

The DCSAdmin Account

4. Right-click in the center panel and select Create User... to create a new user.

a. Enter DCSAdmin as the user name and type in a new password.

b. Uncheck the User must change password at next logon option and check
Password never expires.

c. Click the Create button to create the user, then Close to exit.

Document Conversion Service 3.0

61 Working With Document Conversion Service

The DCSAdmin Account

5. Once the new account has been created, it also has to be added to the local
Administrators group.

a. Double-click the new DCSAdmin user to bring up the properties dialog for the
user.

b. On the Member Of tab add the Administrators group to the list of groups in
which DCSAdmin is a member. Click Apply and OK to save the changes.

6. Now that the account has been created, the PEERNET Document Conversion
Service Monitor 1.0 service needs to be updated to use the new account. Follow
the steps for Changing the Service Log On Account to complete this step. If the
Watch Folder Service is being used, you will need to update the Log On account
for that service as well.

62

Document Conversion Service 3.0

Working With Document Conversion Service

What Files Can I Convert?

What Files Can I Convert?

A basic set of converters are included with Document Conversion Service to provide conversion of the
most commonly used document formats. These converters use the concept of application pooling (running
multiple instances of each application) to achieve fast document conversion with high throughput and fault
tolerance for rogue processes.

To make sure that the converted file matches the original document, the native application used to create
the document is the one used to do the conversion. This means that the necessary third-party applications
need to be installed and licensed for the converters you need to use. These applications are automatically
configured where possible but some applications require other components or custom configuration as
outlined in Configuring Third-Party Applications Used by Document Conversion Service.

When started, Document Conversion Service auto-detects what converters can be run based on what
applications are installed on the computer. If you do not need support for all of the file types that Document
Conversion Service supports the individual converters can be selectively enabled or disabled as required.
See Controlling the Converters in the Advanced Configuration section for more information.

Installing New Applications

If you install new applications while the Document Conversion Service is running, you will need to
restart Document Conversion Service in order to detect and use the new applications.

The table below outlines the file types that can be converted and their required application, if needed.

Supported Document Type and Converter Name Third-Party Application

Converter Name: Adobe Acrobat Reader

· Adobe PDF Documents (*.pdf)

Adobe Reader X, XI, DC (32-bit only)

Converter Name: Autodesk Design Review

· Design Review Drawings (*.dwf)

Autodesk Design Review 2012-2013, 2018

Converter Name: Autodesk Design Review

· AutoCAD Drawings (*.dwg)

Autodesk Design Review 2012-2013 with
DWG TrueView 2012-2013 also installed.
Autodesk Design Review 2018 with DWG
TrueView 2018 also installed.

Converter Name: Microsoft Excel

· Excel Workbooks (*.xlsx, *.xlsm, *.xls)
· Excel Templates (*.xltx, *.xltm, *.xlt)
· Excel Binary Workbook (*.xlsb)

Microsoft Office 2003 SP3
(with Microsoft Office Compatibility Pack)
Microsoft Office 2007 (32-bit and 64-bit)
Microsoft Office 2010 (32-bit and 64-bit)
Microsoft Office 2013 (32-bit and 64-bit)
Microsoft Office 2016 (32-bit and 64-bit)
Microsoft Office 2019 (32-bit and 64-bit)
Microsoft Office 2021 (32-bit and 64-bit)

Converter Name: Ghostscript

· Postscript Files (*.ps)

Ghostscript 9.05 or later
(32-bit only)

Document Conversion Service 3.0

63 Working With Document Conversion Service

What Files Can I Convert?

Supported Document Type and Converter Name Third-Party Application

· Encapsulated Postscript Files (.eps)
· Adobe PDF Documents (*.pdf)

There are known handle leak issues with earlier
9.0X versions of Ghostscript.

Converter Name: PEERNET Image Converter

· JPEG images (*.jpg)
· TIFF images (*.tif)
· High Efficiency Image Files (*.heif, *.heic)
· Google WebP Images (*.webp)
· AVIF Images (*.avif)
· Windows Bitmap images (*.bmp)
· ZSoft PCX images (*.pcx)
· ZSoft DCX images (*.dcx)
· CServe Portable Network Graphics images (*.png)
· Graphics Interchange Format image files (*.gif)
· Icon Format (*.ico)
· Windows Media Photo images (*.wdp, *.hdp, *.jxr)
· ImageMagick images (100+ image formats)

Built-in, no additional applications required.

Converter Name: PEERNET Image Converter

· DejaVu files(*.djvu)

Requires DjVu Shell Extension Pack

Converter Name: PEERNET Image Converter

· 45+ image formats and 500+ raw digital camera
formats

Requires FastPictureViewer Codec Pack

Converter Name: Internet Explorer

· HTML Files (*.htm, *.html)
· Secure HTML (*.shtm, *.shtml)
· Web Archive (*.mht)

Internet Explorer 8.0 - 11.0

Converter Name: Microsoft Outlook

· Outlook Message Files (*.msg)
· Outlook Templates (*.oft)
· vCard Files (*.vcf)
· vCalendar Appointment Files (*.vcs)
· iCalendar Appointment Files (*.ics)
· Electronic Mail messages (*.eml)

Microsoft Office 2003 (*.oft and *.msg only)
Microsoft Office 2007 (32-bit and 64-bit)
Microsoft Office 2010 (32-bit and 64-bit)
Microsoft Office 2013 (32-bit and 64-bit)
Microsoft Office 2016 (32-bit and 64-bit)
Microsoft Office 2019 (32-bit and 64-bit)
Microsoft Office 2021 (32-bit and 64-bit)

Converter Name: Outside-In AX

Supports over 500 common file formats; see the
documentation that came with your Outside In
Technology product.

Oracle Outside In Viewer Technology
(ActiveX)

https://www.cuminas.jp/en/downloads/
https://www.fastpictureviewer.com/codecs/

64

Document Conversion Service 3.0

Working With Document Conversion Service

What Files Can I Convert?

Supported Document Type and Converter Name Third-Party Application

Converter Name: Microsoft PowerPoint

· PowerPoint Presentations (*.pptx, *.pptm, *.ppt)
· PowerPoint Shows (*.ppsx, *.ppsm, *.pps)
· PowerPoint Templates (*potx, *.potm, *.pot)

Microsoft Office 2003 SP3
(with Microsoft Office Compatibility Pack)
Microsoft Office 2007 (32-bit and 64-bit)
Microsoft Office 2010 (32-bit and 64-bit)
Microsoft Office 2013 (32-bit and 64-bit)
Microsoft Office 2016 (32-bit and 64-bit)
Microsoft Office 2019 (32-bit and 64-bit)
Microsoft Office 2021 (32-bit and 64-bit)

Converter Name: Microsoft Publisher

· Publisher Files (*.pub)

Microsoft Office 2003 SP3
(with Microsoft Office Compatibility Pack)
Microsoft Office 2007 (32-bit and 64-bit)
Microsoft Office 2010 (32-bit and 64-bit)
Microsoft Office 2013 (32-bit and 64-bit)
Microsoft Office 2016 (32-bit and 64-bit)
Microsoft Office 2019 (32-bit and 64-bit)
Microsoft Office 2021 (32-bit and 64-bit)

Converter Name: Microsoft Visio

· Visio Drawings (*.vsd)

Microsoft Visio 2003
Microsoft Visio 2007
Microsoft Visio 2010 (32-bit and 64-bit)
Microsoft Visio 2013 (32-bit and 64-bit)
Microsoft Visio 2016 (32-bit and 64-bit)

Converter Name: Microsoft Word

· Word Documents (*.docx, *.docm, *.doc)
· Word Templates (*.dotx, *.dotm, *.dot)
· Rich Text Documents (*.rtf)
· Plain Text Files (*.txt)
· Plain Text Log Files (*.log)

Microsoft Office 2003 SP3
(with Microsoft Office Compatibility Pack)
Microsoft Office 2007 (32-bit and 64-bit)
Microsoft Office 2010 (32-bit and 64-bit)
Microsoft Office 2013 (32-bit and 64-bit)
Microsoft Office 2016 (32-bit and 64-bit)
Microsoft Office 2019 (32-bit and 64-bit)
Microsoft Office 2021 (32-bit and 64-bit)

Converter Name: Microsoft XPS

· XPS Documents (*.xps)
· Open XPS Documents (*.oxps)

Uses Windows built-in XPS document
support, no additional applications required.

Converter Name: PEERNET Passthrough

· Any file type

Built-in, passes the file through the system
without converting.

Document Conversion Service 3.0

65 Working With Document Conversion Service

The System Tray Icon

The System Tray Icon

The system tray icon gives quick access to the following:

· running and stopping the Document Conversion Service

· the logging console

· viewing saved log files

The System Tray Icon

The system tray icon is installed in the Windows Startup folder and automatically started each
time the computer is started. The icon will appear in the notification area in the far right of the taskbar.
The tray icon can also be started manually through the application's program menu if needed.

1. If the icon isn't visible, click the arrow icon next to the notification area to see all hidden icons.

2. Click the icon to show the menu; both a left-click and a right-click will display the menu.

3. If the icon is not visible in the hidden icons window go to Start - All Programs -Tools -
PEERNET Document Conversion Service 3.0 - Show Tray Icon to launch the
system tray manually.

66

Document Conversion Service 3.0

Working With Document Conversion Service

The Logging Console

The Logging Console

The included logging console, the SmartInspect Redistributable Console, is used to monitor Document
Conversion Service when it is running. It allows live logging that can be used to troubleshoot service start
up issues and conversion errors should any occur.

When opened, the console will automatically start displaying any logging information coming from a
running Document Conversion Service. All information being displayed is also saved to a rotating series of
text files; see Viewing Saved Logs for more information.

Do Not Leave the SmartInspect Redistributable Console Open

The SmartInspect Redistributable Console is meant for short term, live logging and
troubleshooting access. Do not leave the logging console open for extended periods of time,
such as overnight, or it will lock and cause issues with Document Conversion Service.

How to Open the Logging Console

The logging console can be opened from the system tray icon or from the Start menu.

1. You can open the logging console from the system tray icon through the Show Logging
Console menu item.

2. You can also open the logging console from Start - All Programs - PEERNET Document
Conversion Service 3.0 - Show Logging Console....

Document Conversion Service 3.0

67 Working With Document Conversion Service

The Logging Console

Logging Console Main Window

The SmartInspect Redistributable Console main window consists of a view of the log entries and a
toolbox section at the bottom which provide additional information.

1. The All Log Entries view is the central part of the SmartInspect Redistributable
Console main window and is responsible for displaying the individual logging entries
as the service is running and processing files.

2. The Watches toolbox displays the state of the currently running threads, information
on the total number of documents processed through the system and a collection of
information about each converter that are running.

3. Other tabs available in the Watches section are:

a. Viewer - shows any attached data of the currently selected logging entry.

68

Document Conversion Service 3.0

Working With Document Conversion Service

The Logging Console

b. Details - shows the details of the log entry selected in the All Log Entries window.

c. Call Stack - show the call stack, if available, of the log entry selected in the All
Log Entries window.

Document Conversion Service 3.0

69 Working With Document Conversion Service

The Logging Console

Filtering the Log Entries

You can filter the log entries so that you are only looking at entries that are reporting errors or
warnings. There are many other ways to filter what is shown in the All Log Entries view; see the help
file that is installed with SmartInspect Redistributable Console for more information.

1. To apply a filter to the log entries, right-click the All Log Entries tab and select Edit View...

2. In the Edit View dialog, select the General tab then check the Hide method enter/leave option.

70

Document Conversion Service 3.0

Working With Document Conversion Service

The Logging Console

3. Select the Log Entries tab and then enable the Only show the following Log Entries option. Use
the Add button to display the Add Log Entry dialog. Select the type of log entry you want to
see and click OK to add it to the list.

4. Repeat for all log entries (Error, Warning, etc.) that you want to see in the log entries view.

Document Conversion Service 3.0

71 Working With Document Conversion Service

The Logging Console

Viewing Saved Log Files

All logging information is also stored in a series of disk-based log files (up to 10 in total) that are
rotated based on size and by day.

1. From the system tray icon select Open Saved Logs Folder.

2. The log files all start with the name DCSLog followed by date and time. Double-click any of these
files to view that log in the logging console.

72

Document Conversion Service 3.0

Working With Document Conversion Service

Starting and Stopping the Service

Starting and Stopping the Service

Document Conversion Service was designed specifically to be run as Windows service through the
PEERNET Document Conversion Service Monitor 1.0 service. The monitoring service will watch the
running Document Conversion Service instance and automatically restart the conversion service if it is
terminated unexpectedly.

The monitoring service is installed as an automatic service under the user account specified during
installation. This is usually the DCSAdmin account created as part of the install, or a different account
chosen during the install.

When the PEERNET Document Conversion Service Monitor 1.0 service's start mode is set to Automatic
(Delayed Start) the conversion service will run when the computer starts up, even when no one is logged
into the computer. See Changing Document Conversion Service's Startup Mode for the steps needed to
change PEERNET Document Conversion Service Monitor 1.0 service's start mode.

Starting Document Conversion Service

1. From the system tray icon menu select Show Logging Console to open the logging console.
This allows you to monitor the service as it starts up.

Document Conversion Service 3.0

73 Working With Document Conversion Service

Starting and Stopping the Service

2. From the system tray icon menu select Run Conversion Service.

3. Logging messages detailing the status of the service will start appearing in the All Log Entries
view in the logging console, if you have it open. When the Successfully started JobItemProcessor
application message appears the service has finished initializing and is ready to start processing
files.

74

Document Conversion Service 3.0

Working With Document Conversion Service

Starting and Stopping the Service

4. The Watches toolbox displays the converters loaded. It shows the number of applications in
each converter's application pool and status on documents received, processed or failed. The
service auto-detects what converters can be run based on what applications are installed on the
computer; if you do not see a converter listed that you expect to see check the logging messages
to see why that application did not load.

Document Conversion Service 3.0

75 Working With Document Conversion Service

Starting and Stopping the Service

Stopping Document Conversion Service

1. Select Stop Conversion Service from the system tray icon context menu to stop Document
Conversion Service. This menu item is disabled if Document Conversion Service is not running.

76

Document Conversion Service 3.0

Working With Document Conversion Service

Starting and Stopping the Service

Using the Services Control Panel

The PEERNET Document Conversion Service Monitor 1.0 service can also be accessed through the
Services control panel applet. From the Services control panel you can do the following:

· start and stop the monitoring service

· change the service Log On account

· change the service start up type

Start the Service

1. Go to Start - Control Panel - System and Security - Administrative Tools -
Services (or type "Services" into the search field on the Start menu).

2. In the Services control panel applet, locate the service PEERNET Document Conversion Service
Monitor 1.0.

3. Select Start from left hand side.

Document Conversion Service 3.0

77 Working With Document Conversion Service

Starting and Stopping the Service

Stop the Service

1. Go to Start - Control Panel - System and Security - Administrative Tools -
Services (or type "Services" into the search field on the Start menu).

2. In the Services control panel applet, locate the service PEERNET Document Conversion Service
Monitor 1.0.

3. Select Stop from left hand side.

78

Document Conversion Service 3.0

Working With Document Conversion Service

Starting and Stopping the Service

Changing the Service Log On Account

1. Go to Start - Control Panel - System and Security - Administrative Tools -
Services (or type "Services" into the search field on the Start menu).

2. In the Services control panel applet, locate the service PEERNET Document Conversion Service
Monitor 1.0.

3. Double-click the service to open the Properties dialog.

4. On the Log On tab, change the Log On account to the desired account.

Changing the Service Startup Mode

Document Conversion Service is initially installed as an automatic (delayed start) service. The section
Changing Document Conversion Service's Startup Mode under Advanced Configuration has complete
instructions on changing the service startup type.

Document Conversion Service 3.0

79 Configuring Third-Party Applications Used by Document Conversion Service

Configuring Third-Party Applications Used by Document
Conversion Service

Document Conversion Service is designed to automatically configure any third-party applications for use
within the conversion service. This includes running Document Conversion Service under new accounts,
like the DCSAdmin account, that have never been logged into. If you chose to use a different account
when installing, the same automatic configuration will take place.

Some of the native applications used by the converters do require that certain components need to be
installed, or that a change is made to the Document Conversion Service configuration to use the desired
version. Any special steps needed for an application are outlined below.

· Configure Adobe Reader for Foreign Languages

· Flash Player for Adobe Reader

· AutoCAD Design Review and TrueView

· Setting the Ghostscript Version

· Microsoft Outlook

· Outside-In AX (uses Oracle Outside In Technology)

· Windows Imaging Component (WIC) Add-Ons and Extensions

· Internet Explorer

In most cases the only thing you have to do is install and license (activate) the appropriate third-party
application used by the converter before running Document Conversion Service.

Third-Party Application Licensing

Any third-party applications that require activation, such as Microsoft Office, must be activated on
the computer where Document Conversion Service is running.

80

Document Conversion Service 3.0

Configuring Third-Party Applications Used by Document Conversion Service

Adobe Reader for Foreign Languages

Adobe Reader for Foreign Languages

If you think you will be converting PDF documents that will contain foreign languages, such as Hebrew,
Arabic, Thai and others, you may need to download the Adobe Reader Font Pack for your version of
Adobe Reader.

The font pack for the Adobe Reader DC can be found here: 32-bit Font Pack and Spelling Dictionary for
Acrobat Reader DC

 You can also follow the instructions shown in Adobe Reader when opening the PDF file. The reader
application will direct you where to download and install it's latest supported font packs.

https://helpx.adobe.com/acrobat/kb/windows-font-packs-32-bit-reader.html
https://helpx.adobe.com/acrobat/kb/windows-font-packs-32-bit-reader.html

Document Conversion Service 3.0

81 Configuring Third-Party Applications Used by Document Conversion Service

Configuring Flash for Adobe Reader

Configuring Flash for Adobe Reader

Support for Flash Player in Adobe was discontinued after December 31, 2020 and the latest Adobe
Reader DC now blocks Flash content from running in Flash Player beginning January 12, 2021.

If you think you will be processing PDF Portfolios or other PDF files that contain Flash content, you will
need to contact the creator of those PDF files for updated versions.

82

Document Conversion Service 3.0

Configuring Third-Party Applications Used by Document Conversion Service

Autodesk Design Review

Autodesk Design Review

With Autodesk Design Review installed you can convert DWF files. If you need to convert DWG files as
well, DWG TrueView will also need to be installed.

Document Conversion Service will work with the following combinations of Autodesk Design Review and
DWG TrueView installed:

· Autodesk Design Review 2012 and DWG TrueView 2012

· Autodesk Design Review 2013 and DWG TrueView 2013

· Starting with version 3.0.014, Autodesk Design Review 2018 and DWG TrueView 2018

o While Autodesk Design Review 2018 will work with DWG TrueView 2012-2017, we recommend
using DWG TrueView 2018 when possible.

Prior to Document Conversion Service 3.0.013 you will need to turn off the unresolved references and
missing SHX (shape) files prompts that are shown by DWG TrueView as outlined in Turning off Prompts
in DWG TrueView. Starting with 3.0.013, an updated FixedProfile.aws profile set to ignore unresolved
references and missing SHX files is copied into the application data section when Document Conversion
Service launches DWG TrueView. Any existing FixedProfile.aws is backed up as
PNDCSBackup.FixedProfile.aws.

If you need to create vector Adobe PDF files, you will also need to Add Printer Permissions to the
Microsoft XPS Document Writer printer for the Everyone account. Alternatively you can add the
permissions for just the account that Document Conversion Service is running under - in most cases this
is the DCSAdmin created as part of the install.

https://knowledge.autodesk.com/support/design-review/learn-explore/caas/sfdcarticles/sfdcarticles/Where-to-download-previous-versions-of-Autodesk-Design-Review.html
https://knowledge.autodesk.com/support/dwg-trueview/learn-explore/caas/sfdcarticles/sfdcarticles/Where-to-download-previous-versions-of-DWG-TrueView.html
https://knowledge.autodesk.com/support/design-review/learn-explore/caas/sfdcarticles/sfdcarticles/Where-to-download-previous-versions-of-Autodesk-Design-Review.html
https://knowledge.autodesk.com/support/dwg-trueview/learn-explore/caas/sfdcarticles/sfdcarticles/Where-to-download-previous-versions-of-DWG-TrueView.html
https://www.autodesk.com/products/design-review/download
https://knowledge.autodesk.com/support/dwg-trueview/learn-explore/caas/sfdcarticles/sfdcarticles/How-to-download-DWG-TrueView.html
https://knowledge.autodesk.com/support/dwg-trueview/learn-explore/caas/sfdcarticles/sfdcarticles/Where-to-download-previous-versions-of-DWG-TrueView.html

Document Conversion Service 3.0

83 Configuring Third-Party Applications Used by Document Conversion Service

Autodesk Design Review

Turning off Prompts in DWG TrueView

These steps only apply if you are running Document Conversion Service prior to version 3.0.013.

If a single DWG is processed that references missing files and/or shapes, DWG TrueView will prompt
as to how to handle these missing elements. To manually prevent these dialogs from prompting and
halting the conversion process the option to update or ignore unresolved references and shapes must
be turned off.

These steps MUST be performed under the same user account the Document Conversion Service
runs under. This is usually DCSAdmin.

1. First, copy a DWG file that references other DWG files into its own location and open this file from
that location.

2. Open the moved DWG. If unresolved references are not already set to ignore you will see the
References - Unresolved References Files dialog box. In this dialog:

a. Check the Always ignore unresolved references and continue option at the bottom of the
dialog.

b. Select the Ignore unresolved references and continue option.

84

Document Conversion Service 3.0

Configuring Third-Party Applications Used by Document Conversion Service

Autodesk Design Review

3. Next, if you have a DWG file that uses missing SHX files, open that file.

a. Check the Always perform my current choice option at the bottom of the dialog.

b. Select the Ignore the missing SHX files and continue option.

4. Close DWG TrueView to save the changes.

Document Conversion Service 3.0

85 Configuring Third-Party Applications Used by Document Conversion Service

Autodesk Design Review

Adding Printer Permissions to Microsoft XPS Document Writer

This is only needed if you are creating vector Adobe PDF files using the profile Adobe PDF
Multipaged, or the settings listed within.

The instructions below show how to add this permission to the Microsoft XPS Document Writer for the
Everyone account. You can instead add these permissions for the account that Document
Conversion Service is running under; this is often the DCSAdmin account. If you used a different
account when installing, add these permissions for that account instead.

You will need to have Administrative permissions to make these changes.

1. Open the Devices and Printers folder by typing Printers into the Search field in the Start menu.

2. Right-click on the Microsoft XPS Document Writer printer and select Printer Properties from the
context menu.

3. On the General tab, Click the Change Properties button in the lower left.

86

Document Conversion Service 3.0

Configuring Third-Party Applications Used by Document Conversion Service

Autodesk Design Review

4. Click on the Security tab, select the Everyone account, then make sure that the permissions
Print, Manage this printer, and Manage documents are checked.

If you only want to add the permissions for the DCSAdmin account or your own custom account,
click the Add... button to show the dialog listing all available users. Select DCSAdmin or your
custom account to add that user to the list. Once added, select that user in the list and make sure
that the permissions Print, Manage this printer, and Manage documents are checked for that user.

Document Conversion Service 3.0

87 Configuring Third-Party Applications Used by Document Conversion Service

Setting the Ghostscript Version

Setting the Ghostscript Version

Beginning with version 3.0.014, Document Conversion Service will auto-detect any 32-bit installed
versions of Ghostscript and will automatically use the highest version that it finds.

If no 32-bit installs of Ghostscript are found, Document Conversion Service will then use the bundled
Ghostscript 7.0.7 included in the Document Conversion Service install. 64-bit installations of Ghostscript
are not supported.

As 7.07 is an older version of Ghostscript, there are limitations when converting newer Postscript files and
PDF files. If you encounter any issues converting Postscript or PDF files, we recommend upgrading to the
latest version of Ghostscript.

Manually Setting the Path to Ghostscript

To use a specific version of Ghostscript, the Ghostscript converter needs to know the path to the
installed version of Ghostscript you want so that it can load the needed components. This path will
vary depending on where you installed Ghostscript and the version you installed.

The Ghostscript converter is configured in the application configuration file. The configuration file is an
XML file that can be edited directly using the DCS Editor, in an XML editor or any text editor such as
Notepad or WordPad.

Warning - Ghostscript 9.05 (32-bit) or Higher

Document Conversion Service was tested against various versions of Ghostscript and it is
recommended that version 9.05 or later be used. Earlier versions were found to have handle
leak issues.

Do not install the 64-bit version available in the latest releases of Ghostscript.

Document Conversion Service only works with the 32-bit version.

Opening the Configuration File

Go to Start - All Programs - PEERNET Document Conversion Service 3.0 - Edit
DCS Configuration File to edit the configuration file using the DCS Editor. The configuration file
can also be opened in any XML editor and can be found here:

Configuration file location:

C:\Program Files\Document Conversion Service 3.0\Core\PNJobItemProcessor.exe.config

The paths to your version of Ghostscript should follow the format below. Replace N.NN with your
version of Ghostscript.

Standard Ghostscript DLL Path:

C:\Program Files (x86)\gs\gsN.NN\bin\gsdll32.dll

88

Document Conversion Service 3.0

Configuring Third-Party Applications Used by Document Conversion Service

Setting the Ghostscript Version

If you have both Ghostscript and GSView installed, you can find the GS_DLL and GS_LIB paths by
opening GSView and going to Options - Advanced Configure from the menu. You can also
search for the keys GS_DLL and GS_LIB in the HKEY_LOCAL_MACHINE hive of your registry by
using the Registry Editor (regedit.exe).

In the configuration section for Ghostscript, uncomment the GS_DLL and GS_LIB settings and set the
path to the version of Ghostscript you want to use.

 Configuration Section for Ghostscript 10.1.2 on a 64-bit machine

<AppFactories>
 <Factories>
 <AppFactory Name="Ghostscript"
 Type="PEERNET.PNDocConv.Applications.PNGhostscriptApplicationFactory"
 Assembly="PNGhostscriptApplicationFactory">
 <Settings>
 <add Name="Enabled" Value="auto"/>
 <add Name="MaxInstances" Value="auto"/>
 <add Name="RecycleThreshold" Value="0"/>
 <add Name="GS_DLL" Value="C:\Program Files (x86)\gs\gs10.1.2\bin\gsdll32.dll" />
 <add Name="GS_LIB" Value="C:\Program Files (x86)\gs\gs10.1.2\bin;
 C:\Program Files (x86)\gs\gs10.1.2\lib" />
 </Settings>
 </AppFactory>
 ...

 </Factories>
 <Settings>
 <!-- Global factory settings -->
 <add Name="MaxInstances" Value="5"/>
 <add Name="RecycleThreshold" Value="100"/>
 </Settings>
</AppFactories>

Document Conversion Service 3.0

89 Configuring Third-Party Applications Used by Document Conversion Service

Vector PDF with Office 2007

Vector PDF with Office 2007

If you are creating vector (searchable) PDF files and have Office 2007 installed, you will need to download
and install the following add-in from Microsoft.

· 2007 Microsoft Office Add-in: Microsoft Save as PDF or XPS

https://www.microsoft.com/en-ca/download/details.aspx?id=7

90

Document Conversion Service 3.0

Configuring Third-Party Applications Used by Document Conversion Service

Microsoft Outlook

Microsoft Outlook

In order to use Outlook to convert e-mail messages files safely and securely, a private e-mail account is
recommended. A private e-mail account cannot send or receive e-mail but does allow Outlook to open and
print Message Files (*.msg) and Templates (*.oft). Starting with Document Conversion Service 3.0.029,
support for EML mail messages has been added as well.

If you have Email (EML) or Message (MSG) files with attachments, see The Watch Folder Service Sample
for the ability to process these files and also extract and convert any attachments in the files. You will still
need to follow the steps below before processing.

If you are using the DCSAdmin account, or have created a new account, Outlook will be automatically
configured to use a private e-mail account when Document Conversion Service is first run. If you are
running the conversion service under a user account where Outlook that is already configured to use an
Exchange server or other mail account no further configuration is necessary.

There are certain conditions in which Document Conversion Service will not launch Outlook. If these
conditions are detected, an error message is displayed in the logging console as well as in the Application
log in the Event Viewer.

· Outlook has never been run or configured under the user account the Document Conversion
Service is running under.

· Printing attachments is enabled. Printing attachments must be disabled for the Microsoft Outlook
converter to operate properly. To disable printing attachments do the following:

o select an e-mail from the list of email (do not open the email)

o go to File - Print and in the Print dialog uncheck the Print attached files checkbox

o close Outlook to save the changes

Setting up a Private E-Mail Account

When setting up a private e-mail account on a computer that is not attached to your company domain, this
is just a case of selecting "No" when Outlook prompts you to create an e-mail account. If the computer is
attached to the domain, and you are running an Exchange server, you will need to configure Outlook to not
use the Exchange server.

Microsoft Outlook 2007, 2010 and 2013

1. This set up process needs to be done under the user account that the Document
Conversion Service will be running under. This is the user account you specified when
installing the product, usually DCSAdmin, or a custom account you chose during
installation.

2. When Outlook 2007 or Outlook 2010 or Outlook 2013 are launched for the first time you will be
prompted to configure an e-mail account. Choose No on this dialog.

Document Conversion Service 3.0

91 Configuring Third-Party Applications Used by Document Conversion Service

Microsoft Outlook

3. On the Cancel Configuration dialog, check the "Continue with no e-mail support" option, then
select Finish.

92

Document Conversion Service 3.0

Configuring Third-Party Applications Used by Document Conversion Service

Microsoft Outlook

4. Exit the application to save the mailbox settings.

5. Log out and log back in as the Document Conversion Service user.

6. Open Outlook 2007 (or Outlook 2010/2013) again. In some scenarios there can be one last
prompt to confirm that you do not want to connect to an Exchange server.

7. Close Outlook and log off the user account.

8. Outlook 2007 (or Outlook 2010/2013) is now configured to run with Document Conversion
Service.

Outlook 2003

1. This set up process needs to be done under the user account that the Document
Conversion Service will be running under. This is the user account you specified when
installing the product, usually DCSAdmin, or a custom account you chose during
installation.

2. When Outlook 2003 is launched for the first time you are prompted to configure an e-mail
account. Choose No on this dialog.

3. Finish the configuration wizard, close Outlook 2003.

4. Log off and log back on as the same user. Do not skip this step or Outlook will not be
configured properly!

5. When the computer has rebooted, open Outlook 2003 again. Outlook 2003 will automatically find
and try to use an Exchange server at this point. Select OK from the dialog to re-configure the e-
mail accounts.

Document Conversion Service 3.0

93 Configuring Third-Party Applications Used by Document Conversion Service

Microsoft Outlook

6. In the Microsoft Exchange Server dialog, choose Cancel.

7. In Outlook go to Tools - Account Settings... to edit the e-mail accounts.

a. From the E-mail Accounts dialog select "View or change existing e-mail accounts" and
select Next.

94

Document Conversion Service 3.0

Configuring Third-Party Applications Used by Document Conversion Service

Microsoft Outlook

8. Select the Microsoft Exchange Server from the list of e-mail accounts and then click the Remove
button to delete the account.

Document Conversion Service 3.0

95 Configuring Third-Party Applications Used by Document Conversion Service

Microsoft Outlook

9. Click Yes to confirm.

10. Outlook 2003 is now ready to use with Document Conversion Service.

96

Document Conversion Service 3.0

Configuring Third-Party Applications Used by Document Conversion Service

Outside-In AX

Outside-In AX

In order to use the Outside-In AX converter to convert files, you will need to download and install the 32-bit
version of Oracle's Outside In Viewer Technology that you are licensed for. To get this component, visit
Oracle Outside In Technology Downloads and download the appropriate Outside-In Viewer Technology.

Starting with version 8.4.1, the Outside-In Viewer needs to be installed and registered under the same
account that Document Conversion Service is running under. In most cases this is the DCSAdmin created
as part of the install.

For versions prior to 8.4.1, the Outside In Viewer can be installed under any user account on the machine
running Document Conversion Service.

If you need to create vector Adobe PDF files, you will also need to Add Printer Permissions to the
Microsoft XPS Document Writer printer for the Everyone account. Alternatively you can add the
permissions for just the account that Document Conversion Service is running under - in most cases this
is the DCSAdmin created as part of the install.

Installing Outside-In Viewer Technology 8.4.1 or later

1. Download the latest 32-bit version of the Outside In Viewer Technology that you are licensed for.
The other versions will not work with Document Conversion Service.

2. On the computer where Document Conversion Service is installed, log into the DCSAdmin
account, or, if you are using a different account, log into that account instead.

a. The DCSAdmin account and password is normally created during the install of Document
Conversion Service. If you used a different account and password during the install, you will
need to log into that account instead.

3. Once logged into the account that Document Conversion Service runs under, install the Outside In
Viewer by running the downloaded setup.

Registering the Outside-In Control

When the install is complete the Outside In Active X control still needs to registered at an
administrative level to work properly with Document Conversion Service.

Open a administrative level command prompt and type the following, replacing the ### with the
version of Outside-In AX you have installed.

C:\Windows\system32\regsvr32.exe "C:\Program Files (x86)\OIX\OutsideX\outsidex###.ocx

https://www.oracle.com/middleware/technologies/outside-in-technology-downloads.html

Document Conversion Service 3.0

97 Configuring Third-Party Applications Used by Document Conversion Service

Outside-In AX

Starting with version 8.5.3, the Outside In Active X control has a dependency on the Visual C++
Redistributable packages for Visual Studio 2013. If you see this error message when trying to register
the control you will need to download and install the package as per the instructions below. If you don't
see the error message then the package has most likely been installed by another piece of software
on your computer.

Downloading the Visual C++ Redistributable Package for Visual Studio 2013

1. Go to the following link: https://www.microsoft.com/en-us/download/details.aspx?id=40784

2. Click the red Download button on the right-hand side.

https://www.microsoft.com/en-us/download/details.aspx?id=40784

98

Document Conversion Service 3.0

Configuring Third-Party Applications Used by Document Conversion Service

Outside-In AX

3. Choose the vcredist_x86.exe download and click the Next button. The other downloads will not
work with Document Conversion Service.

Document Conversion Service 3.0

99 Configuring Third-Party Applications Used by Document Conversion Service

Outside-In AX

4. The download should start automatically.

5. Once downloaded, run the vcredist_x86.exe setup to install the required dependencies.

6. Register the Outside In Active X as shown above.

Adding Printer Permissions to Microsoft XPS Document Writer

This is only needed if you are creating vector Adobe PDF files using the profile Adobe PDF
Multipaged, or the settings listed within.

The instructions below show how to add this permission to the Microsoft XPS Document Writer for the
Everyone account. You can instead add these permissions for the account that Document
Conversion Service is running under; this is often the DCSAdmin account. If you used a different
account when installing, add these permissions for that account instead.

You will need to have Administrative permissions to make these changes.

1. Open the Devices and Printers folder by typing Printers into the Search field in the Start menu.

2. Right-click on the Microsoft XPS Document Writer printer and select Printer Properties from the
context menu.

100

Document Conversion Service 3.0

Configuring Third-Party Applications Used by Document Conversion Service

Outside-In AX

3. On the General tab, Click the Change Properties button in the lower left.

Document Conversion Service 3.0

101 Configuring Third-Party Applications Used by Document Conversion Service

Outside-In AX

4. Click on the Security tab, select the Everyone account, then make sure that the permissions
Print, Manage this printer, and Manage documents are checked.

If you only want to add the permissions for the DCSAdmin account or your own custom account,
click the Add... button to show the dialog listing all available users. Select DCSAdmin or your
custom account to add that user to the list. Once added, select that user in the list and make sure
that the permissions Print, Manage this printer, and Manage documents are checked for that user.

Completing the Changes

Once the above changes have been made, log out of the DCSAdmin account, or the account you are
using.

If the Document Conversion Service is running, you will need to stop and restart the conversion
service to pick up the added component.

102

Document Conversion Service 3.0

Configuring Third-Party Applications Used by Document Conversion Service

Windows Imaging Component (WIC) Add-Ons and Extensions

Windows Imaging Component (WIC) Add-Ons and Extensions

In addition to the built-in image formats supported by the PEERNET Image Converter, you can add
additional image and file formats by installing Windows Imaging Component (WIC) Add-Ons and
extensions such as the FastPictureViewer Codec Pack and the DjVu Shell Extension Pack.

These codec packs and shell extensions need to be installed under the same account that Document
Conversion Service is running under. In most cases this is the DCSAdmin created as part of the install.

The DjVu Shell Extension Pack will add support for the DejaVu file format (*.djvu).

See the FastPictureViewer Codec Pack information page for a complete list of the 45+ image formats and
over 500 raw digital camera formats that are supported.

Installing WIC Add-Ons and Extensions

1. Download the WIC Codec Pack or extension.

2. On the computer where Document Conversion Service is installed, log into the DCSAdmin
account, or, if you are using a different account, log into that account instead.

a. The DCSAdmin account and password is normally created during the install of Document
Conversion Service. If you used a different account and password during the install, you will
need to log into that account instead.

3. Once logged into the account that Document Conversion Service runs under, install the WIC
codec pack or extension.

4. Log out of the DCSAdmin.

5. Restart Document Conversion Service to pick up the added components.

https://www.cuminas.jp/en/downloads/
https://www.fastpictureviewer.com/codecs/

Document Conversion Service 3.0

103 Configuring Third-Party Applications Used by Document Conversion Service

Internet Explorer

Internet Explorer

 Document Conversion Service uses Internet Explorer to convert HTM, HTML and MHT files. When
dealing with MHT and HTML files with large images, and older style HTML files formatted for earlier
browser versions the options for image scaling and browser emulation may need to be configured to
produce the desired output file.

These options are set in the Internet Explorer section of the application configuration file. Changing these
options will require a restart of Document Conversion Service for the new settings to take effect.

Opening the Configuration File

Go to Start - All Programs - PEERNET Document Conversion Service 3.0 - Edit
DCS Configuration File to edit the configuration file using the DCS Editor. The configuration file
can also be opened in any XML editor and can be found here:

Configuration file location:

C:\Program Files\Document Conversion Service 3.0\Core\PNJobItemProcessor.exe.config

 Configuration Section for Internet Explorer

<AppFactories>
 <Factories>

 <AppFactory Name="Internet Explorer"
 Type="PEERNET.PNDocConv.Applications.PNInternetExplorerApplicationFactory"
 Assembly="PNInternetExplorerApplicationFactory">
 <Settings>
 <add Name="Enabled" Value="auto"/>
 <add Name="MaxInstances" Value="auto"/>
 <add Name="RecycleThreshold" Value="0"/>
 <add Name="DocumentOpenTimeout" Value="360000"/>

 <!-- Value range 30 - 100 -->
 <add Name="ConverterPlugIn.PNIExplorer.ShrinkToFitScaleMin" Value="30"/>

 <!-- Values: Empty string, IE7, IE8, IE8FORCE, IE9, IE9FORCE, IE10, IE10FORCE, IE11, IE11FORCE -->
 <add Name="ConverterPlugIn.PNIExplorer.BrowserEmulation" Value="" />

 </Settings>
 </AppFactory>
 ...

 </Factories>
 <Settings>
 <!-- Global factory settings -->
 <add Name="MaxInstances" Value="auto"/>
 <add Name="RecycleThreshold" Value="0"/>
 </Settings>
</AppFactories>

104

Document Conversion Service 3.0

Configuring Third-Party Applications Used by Document Conversion Service

Internet Explorer

Setting the Minimum Scale For Internet Explorer

HTML files and MHT files such as email messages from Outlook can sometimes have very wide
images. By default, these files are always printed with Shrink-to-Fit enabled and a minimum scale
factor of 30. This means that the page will shrink to at most 30% of its original size to fit the image
contents on the page.

If you need the images to be scaled larger, the setting
ConverterPlugIn.PNIExplorer.ShrinkToFitScaleMin can be adjusted from between 30 to 100 to get the
size of image you want.

This option is set at the application level and cannot be changed per file. Changes to this setting
require a restart of Document Conversion Service to take effect.

Setting the Browser Emulation for Internet Explorer

In certain cases, older HTML files created for previous versions of Internet Explorer will not convert
correctly when printed using the latest version of Internet Explorer. This is because Internet Explorer
runs with Edge compatibility by default and it is this new compatibility and rendering that has a
problem with the older style HTML.

If you have these type of files, the setting ConverterPlugIn.PNIExplorer.BrowserEmulation can be
used to force Internet Explorer to emulate older versions of the browser so that the files are rendered
properly based on the older browsers rendering engine.

This option is set at the application level and cannot be changed per file. Changes to this setting
require a restart of Document Conversion Service to take effect.

Document Conversion Service 3.0

105 Converting Files with Document Conversion Service

Converting Files with Document Conversion Service

Command Line Utilities

Several command line utilities for converting files and folders are included with Document Conversion
Service. These utilities can be called from the DCS command window, scheduled tasks, from batch files
or any program that can call an external program.

Watch Folder Service

This included Windows service can watch multiple folders for any files placed in those folders, and will
convert those files using the conversion settings for that folder. Multiple folders can be configured, each
with their own conversion settings. This type of approach is often called a hot folder or drop folder. Files
dropped into the folders are converted and the original file can be kept or discarded.

Additional features that are a part of the Watch Folder Service are:

· Large volume batch conversion is built-in for dealing with existing folder structures with a large
number of files.

· Starting with version 3.0.009, processing Outlook message attachments can optionally be enabled
as needed for each folder. This will extract and convert any attachments in Outlook Message files
(*.msg), as well as the original email message in the file.

· Clustering can be enabled on any folder as of version 3.0.010. Clustering allows multiple servers
running Document Conversion Service and Watch Folder Service to process files from the same
watched folder. This can lead to higher conversion throughput and also allows for fail over should
one of the servers have to be taken offline.

· Beginning with version 3.0.010, separate post-processing for success and failure can be enabled
for each folder.

· The ability to automatically create unique file names and flatten folder structures was added with
version 3.0.019.

The Watch Folder Service is also included as one of the open source samples to allow for further custom
processing of the converted files when completed.

Desktop Conversion Applications

Two desktop conversion applications are supplied as part of the Document Conversion Service and
Document Conversion Service Client Redistributable install.

· The Drop Files Converter Desktop Application- provides a drop area in which to drag and drop files
and folders to be converted. The type of file to be created and where it is stored can be customized.
Advanced options allow remote conversions and the ability to run a command on each newly
created file when the conversion has completed.

· The Convert File Application - a simple interface for selecting and converting a single file at a time.
The type of file being created is determined by the chosen profile of settings and remote conversion
can also be done. This desktop application is also included as open source sample code.

106

Document Conversion Service 3.0

Converting Files with Document Conversion Service

Sample Programs

Both the Watch Folder Service and the Convert File application are included with Document Conversion
Service as sample projects. While these samples can be used on their own, or as a starting point to
integrating Document Conversion Service into your own applications, there is no warranty, implied or
otherwise, of merchantability or fitness for a particular purpose.

The Samples folder can be opened by going to Start - All Programs - PEERNET Document
Conversion Service 3.0 - Samples - Open Samples Folder. The samples can be edited in
this location but if you wish to keep the original source code, copy its folder to another location and edit
that project.

The Convert File Application

This sample demonstrates using the provided .NET library, PEERNET.ConvertUtility.dll to convert a
single file. It is provided in both C#.NET and VB.NET.

Like the command line utilities, the .NET library also uses a conversion profile, an XML file of name-
value pairs, to describe the output. The .NET library methods can also take an IDictionary<String,
String> list of settings instead of the profile. Document Conversion Service includes a set of common
conversion profiles; see the section Conversion Settings for more details, and instructions on creating
your own custom profiles.

The Watch Folder Service Sample

This is an advanced sample in C#.NET that demonstrates using the PNDocConvQueueServiceLib
COM object from a service in a multithreaded environment. It demonstrates a service watching a drop
folder for files and converting those files on demand using Document Conversion Service.

Document Conversion Service 3.0

107 Converting Files with Document Conversion Service

The Convert File Application

The Convert File Application

The Convert File application is a simple application that converts a single, chosen file using Document
Conversion Service and a selected conversion profile. It also includes the ability to convert the file
remotely on another computer.

This application is also provided as a Visual Studio project in both VB.NET and C#.NET and shows how to
convert a file using the provided .NET library, PEERNET.ConvertUtility.dll.

The type of output created is based on the conversion profile chosen. A selection of common conversion
profiles are included with the Document Conversion Service install. See Creating and Customizing Profiles
for more information about the contents of the profiles, a list of profiles included with Document
Conversion Service, and how to create your own.

The application uses the file extension of the source file to determine what converter to use to convert the
file. The default file extension to converter mapping provided through the PEERNET.ConvertUtility.dll is
used. As with profiles, this file extension mapping can be customized, but rarely needs to be. See the
section File Extension to Converter Mapping for details.

You can also use this program to test remote document conversion by following the steps in Setting up
Client-Server Conversion.

108

Document Conversion Service 3.0

Converting Files with Document Conversion Service

The Convert File Application

Running the Convert File Application

Before you begin...

Before running the application, follow the steps in Starting and Stopping the Service to start the
Document Conversion Service. If the service is not started, an error message will display when you
try to convert documents.

1. Open the application by going to Start - All Programs - PEERNET Document
Conversion Service 3.0 – Convert a File....

2. Choose a file to convert using the Browse button or typing in the file name. The Output File Name
field will be populated from the chosen file name.

3. Choose a folder in which to save the output file.

4. Use the Convert to Type drop down list to select your output format from the list of available
profiles.

5. Click Convert to convert the chosen file. When the conversion process is finished, the results
are displayed in the listbox at the bottom.

Document Conversion Service 3.0

109 Converting Files with Document Conversion Service

The Convert File Application

Inside the Sample Code - Calling the PEERNET.ConvertUtility.dll Methods

The conversion process itself happens in the Click event handler of the "Convert File" button. Below
is a simplified version of the C# version of that event. Field checking and error reporting is stripped out
for brevity.

Go to Start - All Programs - PEERNET Document Conversion Service 3.0 –
Samples - Open Samples Folder to see the C# or VB.NET sample code for the full function in
the language of your choice.

Code Sample - Click Event Handler for Convert File in C#

using PEERNET.ConvertUtility;

private void btnConvert_Click(object sender, EventArgs e)
{
 // conversion results returned, use to find files created or errors
 PNConversionItem resultItem = null;

 try
 {
 lbResults.Items.Add("Converting....");

 // This is the single call needed to convert a file
 resultItem =
 PNConverter.ConvertFile(tbInputFile.Text,
 tbSaveFolder.Text,
 tbOutputFileName.Text,
 cbOverwriteExisting.Checked,
 false,
 false,
 cmbBoxFileTypes.Text,
 String.Empty,
 String.Empty,
 cbUseDCOM.Checked ? tbDCOMName.Text : String.Empty,
 String.Empty,
 String.Empty);

 }
 catch (Exception ex)
 {
 String errMsg = String.Format("An error occurred during conversion. {0}",
 ex.ToString()),

 lbResults.Items.Add(errMsg);
 MessageBox.Show(this, errMsg, this.Text);
 }
 finally
 {

 DisplayResultsItems(resultItem);
 }
}

110

Document Conversion Service 3.0

Converting Files with Document Conversion Service

The Drop Files Converter Desktop Application

The Drop Files Converter Desktop Application

The Drop Files Converter desktop application is a simple utility that provides an area in which to drag and
drop files, and if enabled, folders, to be converted. The type of file to be created and where it is stored can
be customized. It includes advanced options to allow remote conversions and the ability to run a command
on each newly created file when the conversion has completed.

This utility is provided as part of Document Conversion Service.

Running the Drop Files Converter Application

Before you begin...

Before running the application, follow the steps in Starting and Stopping the Service to start the
Document Conversion Service. If the service is not started, a message stating "Waiting for service"
will display when you try to convert documents.

Open the application by going to Start - All Programs - PEERNET Document Conversion Service 3.0 –
Drop Files Converter.

Document Conversion Service 3.0

111 Converting Files with Document Conversion Service

The Drop Files Converter Desktop Application

File and folders can be converted by dragging and dropping them onto the light gray drop area. This area
changes to a darker gray color to reflect that a file or folder can be dropped.

Once a file or a collection of files is dropped, the drop area stays dark gray and the conversion will start
immediately and no more files can be dropped until the current collection has been converted. Conversion
options are disabled and the Cancel button enabled. The Cancel button lets you stop converting a group of
files, but cannot cancel the currently running conversion. The cancel action will take place after the
currently converting file is finished.

As files are processed, information about their state is displayed in the drop area, and their color changed
to reflect their status.

When the collection of files has been converted, the list of files can be cleared using the Clear List button
in the upper right.

112

Document Conversion Service 3.0

Converting Files with Document Conversion Service

The Drop Files Converter Desktop Application

By default folders and subfolders are not processed, this option can be enabled if needed. Optionally,
each file can be created in its own subfolder under the output folder.

The type of output created is based on the conversion profile chosen. A selection of common conversion
profiles are included with the Document Conversion Service install. See Creating and Customizing Profiles
for more information about the contents of the profiles, a list of profiles included with Document
Conversion Service, and how to create your own.

The application uses the file extension of the source file to determine what converter to use to convert the
file. The default file extension to converter mapping provided through the PEERNET.ConvertUtility.dll is
used. As with profiles, this file extension mapping can be customized, but rarely needs to be. See the
section File Extension to Converter Mapping for details.

Document Conversion Service 3.0

113 Converting Files with Document Conversion Service

The Drop Files Converter Desktop Application

Advanced Conversion Options

The application includes some advanced options for running a command on each successfully converted
file as well as allowing remote conversion. You can switch between these options by clicking on the text at
the top of the window.

Run Command Line

When enabled, the command line will only run for successfully converted files. A command is normally
another executable, batch file or other command line program. Type in your command or use Browse
button to select it.

To pass the path of the created file into your command, use the macro name $(OutputFilePath). If needed,
command arguments should be enclosed with quotation marks, especially if they have spaces in them.

When running a command there are options guiding whether or not to wait for the command to complete
before moving onto the next file, and controlling how the command window is displayed, if at all.

Wait Mode Wait for command to complete before continuing - wait for the command to
complete before continuing on to the next file.
Wait for command to complete and return error code - waits for the command
to complete before continuing on to the next file and shows the exit code in the
file status.
Do not wait - does not wait for the command to complete. (Default)

Window Style Normal - display the window in its normal state.
Min - display the window minimized to the taskbar
Max - display the window maximized.

114

Document Conversion Service 3.0

Converting Files with Document Conversion Service

The Drop Files Converter Desktop Application

Hidden - do not show the window. (Default)

The default settings for this are to hide the command window and to not wait for the command to
complete. When first adding a command, it can be helpful to display the window and wait for the command
to complete to ensure that it is working as expected and that arguments are being passed correctly. Once
this has been determined, it can be set back to hidden and to not wait.

If the command line settings have been enabled, the file status in the drop area will change to reflect that a
command is being run as part of the conversion process.

Remote Conversion

You can also use this sample program to test remote document conversion where Document Conversion
Service is installed on a different computer. See the steps in Setting up Client-Server Conversion to learn
more about setting Document Conversion Service up in this environment.

For remote conversion, you will need to know the name of the server where Document Conversion
Service is installed and running, and a temporary conversion folder that is accessible to both the client and
the server is required. A network shared folder named DCSREMOTE is automatically created on the
server as part of the Document Conversion Service installation and can be used as this temporary
conversion folder, or a custom remote folder chosen as needed.

Document Conversion Service 3.0

115 Converting Files with Document Conversion Service

The Drop Files Converter Desktop Application

If you do need to use a custom share folder, select the second option from the drop down list and provide
the path to the folder.

116

Document Conversion Service 3.0

Converting Files with Document Conversion Service

Command Line Utilities

Command Line Utilities

Utility Descriptions

DCSConvertFile Converts a file using Document Conversion Service. The file can be
converted in place or saved in a different location.

DCSConvertFileList Given a text file containing a list of files to convert, or a list of files
provided on the command line, converts all files using Document
Conversion Service.

DCSConvertFolder Walks the given folder and converts all files, or all files matching a
provided search filter, using Document Conversion Service. The utility
can optionally also process all subfolders under the starting folder as
well.

DCSCombineFiles Given a text file containing a list of files, and/or a list of files provided on
the command line, this utility will convert the files using Document
Conversion Service and combine all of the files together into a single
multipaged file or a collection of serialized pages. The files are
appended together in the order in which they are received.

DCSCombineFolder Walks a folder and combines all files, or all files matching a search filter,
together into a single file or a collection of serialized pages using
Document Conversion Service. The utility can optionally also process all
subfolders under the starting folder as well.

DCSExtractResults Each of the above utilities can create a results log file containing a
complete snapshot of the conversion information for each file converted,
in both a success and failure case. This utility can be used to extract
information from the results log files, such as all files created, or any
errors that occurred.

DCSCreateFileList Searches a folder, and optionally any subfolders and lists of files
matching the search filter specified.

DCSLicenseDaysLeft Echos to the command line the current license level and how many days
remain in the subscription.

When using the above command line utilities the type of output created is controlled by the settings
passed in through the conversion profile, a XML file of name-value settings. A selection of common
conversion profiles are included with Document Conversion Service. See the section Conversion Settings
for more details, and instructions on creating your own custom profiles.

The command line utilities all return the following error codes:

· 0 – success
· 1 – failed
· 2 – invalid parameters, when the command line tool has parameters

The results of each command line utility are sent to standard out, while any errors that may have
happened are sent to standard error. To capture this information you can:

Document Conversion Service 3.0

117 Converting Files with Document Conversion Service

Command Line Utilities

· use the output redirection operators > and >> to save or append the standard output results in a file

· use the pipe operator (|) to send the standard output to another program as input
· redirect only the standard output to a file with the operator 1>C:\DCS\files.txt
· redirect only the standard error to a file with the operator 2>C:\DCS\err.txt

118

Document Conversion Service 3.0

Converting Files with Document Conversion Service

Command Line Utilities

DCSCreateFileList

A command line utility to search a folder, and optionally any subfolders and return a list of files matching
the search filter specified. The information extracted is sent to standard out.

DCSCreateFileList [/R] [F=filter]
 [/NAME=sort files by name] [/CREATED=sort files by creation date]
 [/MODIFIED=sort files by name]
 [/DESC=sort files in descending order (Z-A, 9-0)]
 searchfolder

This utility can be used to search folders for files to send to the command line utilities, or to find the the
results log files created by any of command line utilities. The folder search is optimized for speed and
efficiency and will return all files that match the filter provided.

Hidden and system files are ignored, and the search pattern filters files based on a regular expression
match of the long name of a file. This is different from the Microsoft .Net System.IO.Directory.GetFiles
method which returns files based on a check against file names with both the 8.3 file name format and the
long file name format, which can cause unexpected file names to be returned.

The file list returned can optionally be sorted by name, date created or date modified. Results are always
in ascending order (0-9, A-Z). Pass /DESC to return the results in descending (9-0, Z-A) order.

Sample Command Lines

Searching a folder based on a single file type:

DCSCreateFileList /F="*.tif" "C:\Test\Output"

DCSCreateFileList /R /F="*.tif" "C:\Test\Output"

Searches the folder C:\Test\Output for all files ending in the pattern .tif. Only files with the three
letter extension .tif will be returned.

The second example will recursively search the folder C:\Test\Output and all subfolders for all
files ending on .tif.

Search a folder for more than one file type, sort by name:

DCSCreateFileList /R /F="*.doc|*.pdf" /NAME "C:\Test\Input"

DCSCreateFileList /R /F="*.doc|*.pdf" /NAME "C:\Test\Input" > C:\Test\InputFileList.txt

To search for more than one file type, separate the filter patterns using the pipe (|) character.

This example recursively searches the folder C:\Test\Input for all files ending in the .doc or .pdf
extension. The complete path to all files with only the three letter extension .doc and .pdf will be
returned and sent to the console through standard output.

The second command line shown uses the redirection operator > to redirect the console's
standard output into a text file located at C:\Test\InputFileList.txt.

Document Conversion Service 3.0

119 Converting Files with Document Conversion Service

Command Line Utilities

Search the folder C:\Test\Output for all succeeded result log files:

DCSCreateFileList /F="*.succeeded.dcsresults" "C:\Test\Output"

DCSCreateFileList /R /F="*.succeeded.dcsresults" "C:\Test\Output" > "C:
\Test\CompletedResults.txt"

Searches the folder C:\Test\Output for all results log files that represent completed
conversions. The full path to each matching file found is sent to the console through standard
output.

The second example does the same as the first except that it recursively searches the folder C:
\Test\Output and any subfolders for all results log files that represent completed conversions,
not just the root folder. It also uses the redirection operator > to redirect the output into a text
file located at C:\Test\CompletedResults.txt.

Search the folder C:\Test\Output for all failed results log files:

DCSCreateFileList /F="*.failed.dcsresults" "C:\Test\Output"

DCSCreateFileList /R /F="*.failed.dcsresults" "C:\Test\Output" > "C:
\Test\FailedResults.txt"

Searches the folder C:\Test\Output for all results log files that represent failed conversions. The
full path to each matching file found is sent to the console through standard output.

The second example does the same as the first except that it recursively searches the folder C:
\Test\Output and any subfolders for all results log files that represent failed conversions, not
just the root folder. It also uses the redirection operator > to redirect the output into a text file
located at C:\Test\FailedResults.txt.

120

Document Conversion Service 3.0

Converting Files with Document Conversion Service

Command Line Utilities

Command Line Arguments

Command line switches are not case-sensitive and can be entered in either upper or lower case.

/R - Include Subfolders (Recurse)

If this switch is used, the subfolders under the folder are included when searching for the list of files
that match the filter pattern.

/F - File Filter

Defines the filter that determines what files can be returned, such as using *.pdf to only process PDF
files. When this switch is not specified all files (*.*) in the folder are will be returned. Hidden and
system files are ignored, and the search pattern filters files based on a regular expression match of
the long name of a file.

Multiple filters are combined using the pipe (|) character, such as *.doc|*.pdf to process only Word and
PDF files.

/NAME - Sort Files by Name

The file list picked up from the folder is sorted by file name in ascending order (0-9, A-Z).

/CREATED - Sort Files by Creation Date

The file list picked up from the folder is sorted by the files creation date file name in ascending order
(0-9, A-Z).

/MODIFIED - Sort Files by Modified Date

The file list picked up from the folder is sorted by the files last modifed date file name in ascending
order (0-9, A-Z).

/DESC - Sort Files in Descending Order

Use with /NAME, /CREATED or /MODIFIED. Sorts the descending order (Z-A, 9-0).

searchfolder

The full path to the folder in which to start searching.

/? - Display Help

When passed as the only argument this switch will display help for this command.

Document Conversion Service 3.0

121 Converting Files with Document Conversion Service

Command Line Utilities

DCSExtractResults

A command line utility to extract information from the results log files. One of the switch arguments must
always be specified. If more than one switch is found, the first one is always used. The information
extracted is sent to standard out.

DCSExtractResults [/s] [/C] [/E] file

The results log files are created by the the following command line utilities:

DCSConvertFile
DCSConvertFileList
DCSConvertFolder
DCSCombineFiles
DCSCombineFolder

Sample Command Lines

Extract a list of all files created to standard out:

DCSExtractResults /C "Document.doc.succeeded.dcsresults"

Extract a list of all files created from the Document.doc.succeeded.dcsresults log file and sends
the information to the console through standard output.

Extract a list of all errors into a text file:

DCSExtractResults /E "C:\Test\Output\Document.doc.failed.dcsresults" > "C:\Test\Errors.txt"

Extract a list of any errors from the Document.doc.failed.dcsresults log file and saves them in
the text file C:\Test\Errors.txt.

Extract the source file name of a failed conversion result file:

DCSExtractResults /S "C:\Test\Output\Document.doc.failed.dcsresults" >> "C:
\Test\Failed.txt"

Extracts the source file name from the Document.doc.failed.dcsresults file and appends it into
the text file C:\Test\CreatedFiles.txt.

122

Document Conversion Service 3.0

Converting Files with Document Conversion Service

Command Line Utilities

Command Line Arguments

Command line switches are not case-sensitive and can be entered in either upper or lower case.

/S - Extract the source file names

Extracts the source file information from the conversion results log file. For DCSConvertFileList and
DCSCombineFiles this can be more than one file.

/C - Extract the created file names

Extracts the list of created files, if any, from the conversion results log file.

/E - Extract the errors

Extracts the list of errors, if any, from the conversion results log file.

/? - Display Help

When passed as the only argument this switch will display help for this command.

file

The full path to the file to the conversion results log file

Document Conversion Service 3.0

123 Converting Files with Document Conversion Service

Command Line Utilities

DCSCombineFiles

A command line utility that accepts a text file containing a list of files, and/or a list of files provided on the
command line, and combines all of the files together into a single file or a collection of serialized pages
using Document Conversion Service. The files are appended together in the order in which they are
received.

The Document Conversion Service must be running, either locally or on a remote computer for the files to
be combined. If it is not running the command will return immediately with an error.

DCSCombineFiles /P=profile /S=save location /N=output name
 [/O] [/L] [/E=extension map]
 [/C=remote computer name;remote scratch folder]
 [/FAIL=failed results log file location] [/SIL=conversion log file path]
 [/D="name:value"] [/W=wait time]
 [/I=input text file path]
 [/T=alternate temp folder]
 "file" "file" ...

Sample Command Lines

Combine all files on command line into a single TIFF image:

DCSCombineFiles /S="C:\Test\Output" /N="CombinedFiles" /P="TIFF 200dpi Monochrome"
 "C:\Input\File1.doc" "C:\Input2\File2.doc"

Sends the files C:\Input\File1.doc and C:\Input\File2.doc to Document Conversion Service to be
converted using the settings contained in the conversion profile TIFF 200dpi Monochrome.

The converted files are saved as a single TIFF image, named CombinedFiles.tif in the output
folder C:\Test\Output. The files are combined in the order in which they are returned by the
underlying file system.

If an output file with the same name already exists, or if one of the files in the combine set fails
to convert, the combine will fail and a results log file will be placed in a folder named .failed
created in the save location. The results log file name will be "PNCombineFiles_", followed by a
date and time stamp and ending with failed.dcsresults. This can be controlled with the /FAIL
switch.

To overwrite an existing file the /O switch would need to be added to the above command.

124

Document Conversion Service 3.0

Converting Files with Document Conversion Service

Command Line Utilities

Convert all files in the input file to a multipage PDF:

DCSCombineFiles /S="C:\Test\Output" /N="CombinedFiles"
 /P="PDF 300dpi OptimizedColor"
 /I="C:\Test\Files.txt"

Sends the files listed in the text file C:\Test\Files.txt to Document Conversion Service to be
converted using the settings contained in the conversion profile PDF 300dpi OptimizedColor.

The converted files are saved as a multipaged PDF file named CombinedFiles.pdf in the output
folder C:\Test\Output. The files are combined in the order they are listed in the input file.

Upon successful conversion each output file is placed under the C:\Test\Output folder.

If a file with the same name already exists, or if one of the files in the combine set fails to
convert, the conversion will fail and a results log file will be placed in a folder named .failed
created in the save location. Where this file is saved can be controlled with the /FAIL switch.

The results log file name starts with PNCombineFiles, contains a date and time stamp and
ends with .failed.dcsresults.

Convert all files in the input file and command line to a multipage PDF in that order:

DCSCombineFiles /S="C:\Test\Output" /N="CombinedFiles"
 /P="PDF 300dpi OptimizedColor" /I="C:\Test\Files.txt"
 "C:\Test\EndOfCombine.doc"

Sends the files listed in the text file "C:\Test\Files.txt", followed by the file "C:
\Test\EndOfCombine.doc" specified on the command line, in that order, to Document
Conversion Service to be converted using the settings contained in the conversion profile PDF
300dpi OptimizedColor.

The converted files are saved as a multipaged PDF file named CombinedFiles.pdf in the output
folder C:\Test\Output. The files are combined in the order they are listed in the input file.

Upon successful conversion each output file is placed under the C:\Test\Output folder.

If a file with the same name already exists, or if one of the files in the combine set fails to
convert, the combine will fail and a results log file will be placed in a folder named .failed
created in the save location. Where this file is saved can be controlled with the /FAIL switch.

The results log file name starts with PNCombineFiles, contains a date and time stamp and
ends with .failed.dcsresults.

Document Conversion Service 3.0

125 Converting Files with Document Conversion Service

Command Line Utilities

Combine all files on command line into a single TIFF image, save conversion results logs to a
specific location:

DCSCombineFiles /L /S="C:\Test\Output" /N="CombinedFiles"
 /P="TIFF 200dpi Monochrome" /FAIL="C:\Test\Output\Failed\\"
 "C:\Input\File1.doc" "C:\Input2\File2.doc"

Sends the files C:\Input\File1.doc and C:\Input\File2.doc to Document Conversion Service to be
converted using the settings contained in the conversion profile TIFF 200dpi Monochrome.

The converted files are saved as single TIFF image, named CombinedFiles.tif in the output
folder C:\Test\Output. The files are combined in the order given on the command line -
File1.doc followed by File2.doc.

If a file with the same name already exists, or if one of the files in the combine set fails to
convert, the combine will fail and a conversion results log file will be placed into the folder C:
\Test\Output\Failed.

The conversion results log file name starts with PNCombineFiles, contains a date and time
stamp and ends with failed.dcsresults. You can use the /D parameter
UseDateTimeInFailedFolder to remove the date and time stamp from the results log file name.

To overwrite an existing file the /O switch would need to be added to the above command.

126

Document Conversion Service 3.0

Converting Files with Document Conversion Service

Command Line Utilities

Command Line Arguments

Command line switches are not case-sensitive and can be entered in either upper or lower case.

/S - The Save Location

This is a required argument. Pass in the full path to the folder in which to save the new files.

· If the path includes spaces it must be enclosed in quotes.
· If the path doesn't exist, the conversion will fail.
· If a file of the same name already exists in the save file location, the conversion will fail. To

enable file overwriting, use the /O option.

Example:

/S="C:\Converted Files\Test"

/N - Output File Name

This is a required argument and specifies the name to use for the output file. The default file extension
for the type of file being created will always be added to the name provided here.

Example:

/N="CombinedOutput_06_15_2012"

/O - Overwrite Always

Enables overwrite mode so that existing files of the same name are overwritten with the new file. If
overwrite is not specified the combine action will fail if a file of the same name already exists in the
save location.

Document Conversion Service 3.0

127 Converting Files with Document Conversion Service

Command Line Utilities

/L - Results Log

The results log file is an XML file containing a complete snapshot of the combine request. Normally
only saved for failed conversions, the /L argument enables creation of the results log file when the
conversion succeeds.

All results log files for this command line utility start with PNCombineFiles_, contain a date and time
stamp and end with the conversion status.

When the combine has succeeded, the results log file is placed in the same folder as the output
(specified using the /S switch) and would have a name similar to the following:

PNCombineFiles_2013_05_31_2_50_05_PM_3.succeeded.dcsresults

The bold text in the name will change for each file and is based on the date and time of the run and an
internal counter. You can suppress the use of the date and time information in the file name by
passing false for the UseDateTimeInFailedFolder setting using the /D switch.

In the case of a failed conversion, the log file is always created. See the /FAIL switch to control the
location and creation of the failed results log files.

The result log files can later be passed to the DCSExtractResults command line utility to extract
information such as all files created or any errors encountered during conversion. You can search a
folder for the results log files using the DCSCreateFileList utility.

128

Document Conversion Service 3.0

Converting Files with Document Conversion Service

Command Line Utilities

/FAIL - Combine Results Log File Location

In the case of a failed combine, the combine results log file is always created. When the combine
does not succeed, a .failed folder is created in the save folder location (provided by the /S switch)
and the results log files are stored there.

The name of the results log when the combine does not succeed will be similar to the following:

PNCombineFiles_2013_05_31_2_50_05_PM_3.failed.dcsresults

The bold text in the name will change each time a combine command is run and is based on the date
and time of the run and an internal counter.

This argument allows you to override the default use of the .failed folder and to provide a specific
folder in which to store the failed results log file. You can suppress the use of the date and time
information in the file name by passing false for the UseDateTimeInFailedFolder setting using the /D
switch.

Note: The double ending backslash used when specifying the folder for the /FAIL switch is required
for the command line path to be parsed correctly.

Examples:

/FAIL="C:\ConvertedFiles\Failed\\" /D="UseDateTimeInFailedFolder:FALSE"

If you do not want to create the failed results log files at all, you can use the /D switch to pass the
KeepFailedItemResultsFiles setting as false.

On the command line:

/D="KeepFailedItemResultsFiles:False"

In a conversion profile:

<add Name="KeepFailedItemResultsFiles" Value="False"/>

The result log files can later be passed to the DCSExtractResults command line utility to extract
information such the source file used or any errors encountered during conversion. You can search a
folder for the results log files using the DCSCreateFileList utility.

/P - Conversion Profile

This argument is required. The type of file created is controlled by supplying a conversion profile using
this switch. The profiles are referenced by passing in the name of the profile XML file, with or without
the XML extension. See Creating and Customizing Profiles for more information about the contents of
the profiles, a list of profiles included with Document Conversion Service, and how to create your own.

Examples:

/P="TIFF 300dpi Color Fax"
/P="TIFF 204x196dpi Monochrome Fax.xml"

Document Conversion Service 3.0

129 Converting Files with Document Conversion Service

Command Line Utilities

/D - Define Setting

Individual profile settings can be supplied on the command line using this switch. This switch can be
specified multiple times for separate settings and any settings passed here will override the settings in
the profile.

Any name-value pair that can be written in a profile can be passed through this parameter. This
includes options to control the conversion settings as well as the behavior of the individual converters
as well. See Creating and Customizing Profiles for more information about the name-value pairs that
can be used.

Examples:

These first two are settings that control the converter options, such as what pages to print, and the
output that PowerPoint will print.

/D="PrintRange:1-5"

/D="PowerPoint.PrintOptionsOutputType:PrintOutputNotesPages"

These two settings control the output file creation options, and would override or add to the settings in
the conversion profile passed using the /P switch.

/D="Image Options;Fax Resolution:3"
/D="TIFF File Format;BW compression:Group3-2D"

These two settings control the where the failed results log files are created and are most often used
along with the /FAIL switch to control where the results log files are saved.

/D="KeepFailedItemResultsFiles:TRUE"
/D="UseDateTimeInFailedFolder:FALSE"

/E - File Extension Mapping

A file extension mapping profile uses the extension of the source file to determine what converter will
be used to convert the file before combining them together. Like the conversion profiles, this file is
also an XML file. This switch is optional and an internal default mapping is provided. You would only
need to provide this file if you wanted to override the default file extension to converter mappings
provided.

Examples:

/E="Custom Extension To Converter Map"

/W - Wait Time

Use this switch wait to the specified number of seconds for the Document Conversion Service to be
running and available to convert and combine documents. If Document Conversion Service is already
running the command executes immediately. If the Document Conversion Service is not running in the
timeout period specified, the command will return with an error.

If this argument is not specified the command will return immediately with an error if Document
Conversion Service is not running.

Example:

/W=300

130

Document Conversion Service 3.0

Converting Files with Document Conversion Service

Command Line Utilities

/I - Input text file path

The collection of files to be combined can be passed as a text file containing a list of files, one each
per line. The full path or a UNC path to the source file must be given for the files listed in the input text
file; relative paths are not supported.

· If the path to the file includes spaces it must be enclosed in quotes.
· If the file doesn't exist, the conversion will fail.

The files are combined together in the order in which they are listed in the folder. Any files were
specified directly on the command line before this switch are combined before adding the files in the
input text file. Any source files specified on the command line after this switch are combined after the
files in the input text file.

The input text file should follow the following format:

C:\Input\WordFiles\File1.doc
C:\Input\WordFiles\File2.docx;C:\OutputPath\WordFiles\
C:\Input\PDF\File3.pdf;C:\OutputPath\PDFFIles\
\\server\share\Input\scans\scan1.tif

/C - Convert on a Remote Computer (DCOM)

If Document Conversion Service is running on a different computer, use this switch to pass the name
of the remote computer and the path of a shared location that both computers have access to.
Separate the name of the remote computer and the path to the shared folder location with a semi-
colon.

When combining remotely, the client redistributable, PNDocConvClientSetup_3.0.exe, must be
installed on the computer running this command line utility. The client setup install program is included
as part of the Document Conversion Service install and can be found in the \Samples\Redist folder in
your product installation folder.

Examples:

/C="DOCCONV_SERVER;\\DOCCONV_SERVER\DCSREMOTE"

Document Conversion Service 3.0

131 Converting Files with Document Conversion Service

Command Line Utilities

/SIL - Smart Inspect Logging File

Smart Inspect Log files are a tracing of the entire conversion process and are not the same as the
conversion results log files created when a conversion fails. These logs can be viewed using the
SmartInspect Redistributable Console included with Document Conversion Service.

These log files are automatically deleted when conversion succeeds. To keep the log files on success
use the custom setting AlwaysKeepProcessingLoggingFiles as shown below.

The default location for this file is the TEMP folder. Each logging file is assigned a unique date, time
and thread prefix followed by "_PNCombineFiles.sil", such as
2014_09_11_2_38_00_PM_4_PNCombineFiles.sil.

Use this argument to specify a custom path and optional file name for the SmartInspect logging file
(*.sil) created by this utility. The /SIL switch can take a folder, or a path to a filename. If a path without
a trailing backslash is provided, the last part of the path is assumed to be a filename.

Note: The double ending backslash used when specifying a folder for the /SIL switch is required for
the command line path to be parsed correctly.

/SIL= Is interpreted as...

"C:\Test\LogFile" Create the SmartInspect log file as C:
\Test\LogFile.sil.

"C:\Test\LogFile\\" Create the SmartInspect log file as C:
\Test\LogFile\datetime_PNCombineFiles.sil

"C:\Test\LogFile\ConvertFileCustom.sil" Create the SmartInspect log file as C:
\Test\LogFile\ConvertFileCustom.sil

The following settings can be used to control the creation and naming of the logging file. These
settings are all passed using the /D switch.

Custom Setting Description

RemoveDateTimePrefixOnProcessingLoggingFiles Pass True to disable the adding of the
unique date, time and thread prefix when
a custom file name has not been specified
in the ConvertFileProcessLoggingPath
parameter.

KeepFailedProcessingLoggingFiles Pass as False to disable the automatic
creation of SmartInspect logging files
when conversion fails. This setting can be
overridden by
AlwaysKeepProcessingLoggingFiles.

AlwaysKeepProcessingLoggingFiles When set to True, the SmartInspect
logging files are always created in the %
TEMP% or other specified folder for both
successful and failed conversions. If set to
False, no logging files are created. This
setting will override the
KeepFailedProcessingLoggingFiles
setting.

Examples:

132

Document Conversion Service 3.0

Converting Files with Document Conversion Service

Command Line Utilities

Pass a custom folder and remove the prefix, each run will overwrite the log file C:
\PEERNET\Logs\PNCombineFiles.sil.

/SIL="C:\PEERNET\Logs\\" /D="RemoveDateTimePrefixOnProcessingLoggingFiles:TRUE"

Pass a custom folder and log file name and remove the prefix. Each run will overwrite the logging file
C:\PEERNET\Logs\MyLogFile.sil.

/SIL="C:\PEERNET\Logs\MyLogFile" /D="RemoveDateTimePrefixOnProcessingLoggingFiles:TRUE"

Don't save any SmartInspect log files at all.

/D="AlwaysKeepProcessingLoggingFiles:FALSE"

/T - Alternate Temp Folder

This is an advanced setting that should not be needed in most cases. When converting files, the
conversion tool copies each file and performs the conversion in temporary staging and working folders
created on demand in the default Windows temp folder. When dealing with long path and file names
the default folders created can occasionally cause path names that are too long to process. When this
happens this switch can be used to set the temporary folder to a shorter path to allow processing.

This setting is overridden if the /C option for remote conversion is being used with its own path to a
shared location for conversion.

Examples:

/T="C:\PNTemp\\"

/? - Display Help

When passed as the only argument this switch will display help for this command.

File

The full path to the files to combine. You can list more than one on the command line.

The files are combined together in the order in which they listed on the command line. If any files were
specified in an input text file using the /I switch before these files, the files listed in the input text file
are combined before adding the files from the command line. If you specify the input text file after the
files on the command line, the command line files are combined first, then the files listed in the input
text file.

· If the path to the file includes spaces it must be enclosed in quotes.
· If the file doesn't exist, the conversion will fail.

Document Conversion Service 3.0

133 Converting Files with Document Conversion Service

Command Line Utilities

DCSCombineFolder

A command line utility to walk a folder and combines all files, or all files matching a search filter, into a
single file or a collection of serialized pages using Document Conversion Service. The utility can optionally
also process all subfolders under the starting folder as well.

The order of the files in the combined file cannot be guaranteed and is dependent on the file system. Most
cases they are alphabetical but can also be by creation time. Files from the root of the input folder are
listed first, then all files from the subfolders when enabled. Subfolders are listed in alphabetical or creation
time order, again dependent on the file system.

The Document Conversion Service must be running, either locally or on a remote computer for the files to
be combined. If it is not running the command will return immediately with an error.

DCSCombineFolder /P=profile /S=save location /N=output name
 [/R] [/F=filter] [/X=exclude filter]
 [/O] [/L] [/E=extension map]
 [/C=remote computer name;remote scratch folder]
 [/FAIL=failed results log file location] [/SIL=conversion log file path]
 [/D="name:value"] [/W=wait time]
 [/T=alternate temp folder]
 [/NAME=sort files by name] [/CREATED=sort files by creation date]
 [/MODIFIED=sort files by name] [/DESC=sort files in descending order (Z-A, 9-0)]
 "folder"

Sample Command Lines

Combine all files in the folder into a single TIFF image:

DCSCombineFolder /S="C:\Test\Output" /N="CombinedFromFolder"
 /P="TIFF 200dpi Monochrome"
 "C:\Input\"

Searches for and send all files from the root of the C:\Input\ folder to Document Conversion
Service to be converted using the settings contained in the conversion profile TIFF 200dpi
Monochrome.

The converted files are combined and saved as single TIFF image, named
CombinedFromFolder.tif in the output folder C:\Test\Output.

If the file C:\Test\Output\CombinedFromFolder.tif already exists, or if one of the files in the
combine set fails to convert, the combine will fail and a results log file will be placed in a folder
named .failed created in the save location. The results log file name will be
"PNCombineFolder_", followed by a date and time stamp and ending with failed.dcsresults.
This can be controlled with the /FAIL switch.

To overwrite an existing file the /O switch would need to be added to the above command.

134

Document Conversion Service 3.0

Converting Files with Document Conversion Service

Command Line Utilities

Convert all files in the folder to a multipage PDF:

DCSCombineFolder /S="C:\Test\Output" /N="CombinedFromFolder"
 /P="PDF 300dpi OptimizedColor"
 "C:\Input\"

Searches for and sends all files from the root of C:\Input\ folder to Document Conversion
Service to be converted using the settings contained in the conversion profile PDF 300dpi
OptimizedColor.

The converted files are combined and saved as a multipaged PDF file named
CombinedFromFolder.pdf in the output folder C:\Test\Output.

If the file C:\Test\Output\CombinedFromFolder.pdf already exists, or if one of the files in the
combine set fails to convert, the conversion will fail and a results log file will be placed in a
folder named .failed created in the save location. Where this file is saved can be controlled with
the /FAIL switch.

The results log file name starts with PNCombineFolder, contains a date and time stamp and
ends with .failed.dcsresults.

Convert all Word documents in a folder and all subfolders to a multipage PDF:

DCSCombineFolder /S="C:\Test\Output" /N="CombinedFromFolder" /R /F="*.doc|*.docx"
 /P="PDF 300dpi OptimizedColor"
 "C:\Input\"

Searches C:\Input\ and any subfolders for Word documents to send to Document Conversion
Service to be converted using the settings contained in the conversion profile PDF 300dpi
OptimizedColor.

The converted files are combined and saved as a multipaged PDF file named
CombinedFromFolder.pdf in the output folder C:\Test\Output.

If the file C:\Test\Output\CombinedFromFolder.pdf already exists, or if one of the files in the
combine set fails to convert, the conversion will fail and a results log file will be placed in a
folder named .failed created in the save location. Where this file is saved can be controlled with
the /FAIL switch.

The results log file name starts with PNCombineFolder, contains a date and time stamp and
ends with .failed.dcsresults.

Document Conversion Service 3.0

135 Converting Files with Document Conversion Service

Command Line Utilities

Combine all files except PDF to a new PDF file, save conversion results logs to a specific location:

DCSCombineFolder /R /L /S="C:\Test\Output" /N="CombinedFromFolder"
 /P="PDF 300dpi OptimizedColor" /X="*.pdf"
 /FAIL="C:\Test\Output\Failed\\"
 "C:\Input\"

Searches C:\Input\ and any subfolders (/R) for all files except PDF documents (/X="*.pdf") to
send to Document Conversion Service to be converted using the settings contained in the
conversion profile PDF 300dpi OptimizedColor.

The converted files are saved as single PDF file, CombinedFromFolder.pdf, in the output folder
C:\Test\Output.

If a file with the same name already exists, or if one of the files in the combine set fails to
convert, the combine will fail and a conversion results log file will be placed into the folder C:
\Test\Output\Failed.

The conversion results log file name starts with PNCombineFolder, contains a date and time
stamp and ends with failed.dcsresults. You can use the /D parameter
UseDateTimeInFailedFolder to remove the date and time stamp from the results log file name.

To overwrite an existing file the /O switch would need to be added to the above command.

136

Document Conversion Service 3.0

Converting Files with Document Conversion Service

Command Line Utilities

Command Line Arguments

Command line switches are not case-sensitive and can be entered in either upper or lower case.

/R - Include Subfolders (Recurse)

Use this switch to also search any subfolders under the source folder when building the list of files to
be passed to Document Conversion Service to be converted.

/F - File Filter

A filter can be provided using this switch to only process certain types of files. Multiple file filters can
be combined using the pipe (|) character. Hidden and system files are ignored, and the search pattern
filters files based on a regular expression match of the long name of a file.

When this switch is not specified all files in the folder are (*.*) passed to Document Conversion
Service to be processed.

Examples:

Convert PDF only: /F="*.pdf"
Convert Word, Excel and PDF only: /F="*.doc|*.docx|*.xls|*.xlsx|*.pdf"
Convert all Word files starting with MEMO: /F="MEMO*.doc"

/X - Exclude File Filter

A exclude file filter can be provided to take the returned file list gathered using the /F file filter and
exclude any files that match a pattern. Multiple patterns can be combined using the pipe (|)
character.By default no files are excluded.

Examples:

Exclude Word and Excel 2010 documents: /X="*.docx|*.xlsx"
Exclude all files starting with "Draft": /X="Draft*.*"

/S - The Save Location

This is a required argument. Pass in the full path to the folder in which to save the new files.

· If the path includes spaces it must be enclosed in quotes.
· If the path doesn't exist, the conversion will fail.
· If a file of the same name already exists in the save file location, the conversion will fail. To

enable file overwriting, use the /O option.

Example:

/S="C:\Converted Files\Test"

Document Conversion Service 3.0

137 Converting Files with Document Conversion Service

Command Line Utilities

/N - Output File Name

This is a required argument and specifies the name to use for the output file. The default file extension
for the type of file being created will always be added to the name provided here.

Example:

/N="CombinedOutput_06_15_2012"

/O - Overwrite Always

Enables overwrite mode so that existing files of the same name are overwritten with the new file. If
overwrite is not specified the combine action will fail if a file of the same name already exists in the
save location.

/L - Results Log

The results log file is an XML file containing a complete snapshot of the combine request. Normally
only saved for failed conversions, the /L argument enables creation of the results log file when the
conversion succeeds.

All results log files for this command line utility start with PNCombineFolder_, contain a date and time
stamp and end with the conversion status.

When the combine has succeeded, the results log file is placed in the same folder as the output
(specified using the /S switch) and would have a name similar to the following:

PNCombineFolder_2013_05_31_2_50_05_PM_3.succeeded.dcsresults

The bold text in the name will change for each file and is based on the date and time of the run and an
internal counter. You can suppress the use of the date and time information in the file name by
passing false for the UseDateTimeInFailedFolder setting using the /D switch.

In the case of a failed conversion, the log file is always created. See the /FAIL switch to control the
location and creation of the failed results log files.

The result log files can later be passed to the DCSExtractResults command line utility to extract
information such as all files created or any errors encountered during conversion. You can search a
folder for the results log files using the DCSCreateFileList utility.

138

Document Conversion Service 3.0

Converting Files with Document Conversion Service

Command Line Utilities

/FAIL - Combine Results Log File Location

In the case of a failed combine, the combine results log file is always created. When the combine
does not succeed, a .failed folder is created in the save folder location (provided by the /S switch)
and the results log files are stored there.

The name of the results log when the combine does not succeed will be similar to the following:

PNCombineFolder_2013_05_31_2_50_05_PM_3.failed.dcsresults

The bold text in the name will change each time a combine command is run and is based on the date
and time of the run and an internal counter.

This argument allows you to override the default use of the .failed folder and to provide a specific
folder in which to store the failed results log file. You can suppress the use of the date and time
information in the file name by passing false for the UseDateTimeInFailedFolder setting using the /D
switch.

Note: The double ending backslash used when specifying the folder for the /FAIL switch is required
for the command line path to be parsed correctly.

Examples:

/FAIL="C:\ConvertedFiles\Failed\\" /D="UseDateTimeInFailedFolder:FALSE"

If you do not want to create the failed results log files at all, you can use the /D switch to pass the
KeepFailedItemResultsFiles setting as false.

On the command line:

/D="KeepFailedItemResultsFiles:False"

In a conversion profile:

<add Name="KeepFailedItemResultsFiles" Value="False"/>

The result log files can later be passed to the DCSExtractResults command line utility to extract
information such the source file used or any errors encountered during conversion. You can search a
folder for the results log files using the DCSCreateFileList utility.

/P - Conversion Profile

This argument is required. The type of file created is controlled by supplying a conversion profile using
this switch. The profiles are referenced by passing in the name of the profile XML file, with or without
the XML extension. See Creating and Customizing Profiles for more information about the contents of
the profiles, a list of profiles included with Document Conversion Service, and how to create your own.

Examples:

/P="PDF 300dpi OptimizedColor"
/P="TIFF 204x196dpi Monochrome Fax.xml"

Document Conversion Service 3.0

139 Converting Files with Document Conversion Service

Command Line Utilities

/D - Define Setting

Individual profile settings can be supplied on the command line using this switch. This switch can be
specified multiple times for separate settings. Any settings passed here will override the settings in the
profile.

Any name-value pair that can be written in a profile can be passed through this parameter. This
includes options to control the conversion settings as well as the behavior of the individual converters
as well. See Creating and Customizing Profiles for more information about the name-value pairs that
can be used.

Examples:

These first two are settings that control the converter options, such as what pages to print, and the
output that PowerPoint will print.

/D="PrintRange:1-5"

/D="PowerPoint.PrintOptionsOutputType:PrintOutputNotesPages"

These two settings control the output file creation options, and would override or add to the settings in
the conversion profile passed using the /P switch.

/D="Image Options;Fax Resolution:3"
/D="TIFF File Format;BW compression:Group3-2D"

These two settings control the where the failed results log files are created and are most often used
along with the /FAIL switch to control where the results log files are saved.

/D="KeepFailedItemResultsFiles:TRUE"
/D="UseDateTimeInFailedFolder:FALSE"

/E - File Extension Mapping

A file extension mapping profile uses the extension of the source file to determine what converter will
be used to convert the file before combining them together. Like the conversion profiles, this file is
also an XML file. This switch is optional and an internal default mapping is provided. You would only
need to provide this file if you wanted to override the default file extension to converter mappings
provided.

Examples:

/E="Custom Extension To Converter Map"

/W - Wait Time

Use this switch wait to the specified number of seconds for the Document Conversion Service to be
running and available to convert and combine documents. If Document Conversion Service is already
running the command executes immediately. If the Document Conversion Service is not running in the
timeout period specified, the command will return with an error.

If this argument is not specified the command will return immediately with an error if Document
Conversion Service is not running.

Example:

/W=300

140

Document Conversion Service 3.0

Converting Files with Document Conversion Service

Command Line Utilities

/C - Convert on a Remote Computer (DCOM)

If Document Conversion Service is running on a different computer, use this switch to pass the name
of the remote computer and the path of a shared location that both computers have access to.
Separate the name of the remote computer and the path to the shared folder location with a semi-
colon.

When combining remotely, the client redistributable, PNDocConvClientSetup_3.0.exe, must be
installed on the computer running this command line utility. The client setup install program is included
as part of the Document Conversion Service install and can be found in the \Samples\Redist folder in
your product installation folder.

Examples:

/C="DOCCONV_SERVER;\\DOCCONV_SERVER\DCSREMOTE"

Document Conversion Service 3.0

141 Converting Files with Document Conversion Service

Command Line Utilities

/SIL - Smart Inspect Logging File

Smart Inspect Log files are a tracing of the entire conversion process and are not the same as the
conversion results log files created when a conversion fails. These logs can be viewed using the
SmartInspect Redistributable Console included with Document Conversion Service.

These log files are automatically deleted when conversion succeeds. To keep the log files on success
use the custom setting AlwaysKeepProcessingLoggingFiles as shown below.

The default location for this file is the TEMP folder. Each logging file is assigned a unique date, time
and thread prefix followed by "_PNCombineFolder.sil", such as
2014_09_11_2_38_00_PM_4_PNCombineFolder.sil.

Use this argument to specify a custom path and optional file name for the SmartInspect logging file
(*.sil) created by this utility. The /SIL switch can take a folder, or a path to a filename. If a path without
a trailing backslash is provided, the last part of the path is assumed to be a filename.

Note: The double ending backslash used when specifying a folder for the /SIL switch is required for
the command line path to be parsed correctly.

/SIL= Is interpreted as...

"C:\Test\LogFile" Create the SmartInspect log file as C:
\Test\LogFile.sil.

"C:\Test\LogFile\\" Create the SmartInspect log file as C:
\Test\LogFile\datetime_PNCombineFolder.sil

"C:\Test\LogFile\ConvertFileCustom.sil" Create the SmartInspect log file as C:
\Test\LogFile\ConvertFileCustom.sil

The following settings can be used to control the creation and naming of the logging file. These
settings are all passed using the /D switch.

Custom Setting Description

RemoveDateTimePrefixOnProcessingLoggingFiles Pass True to disable the adding of the
unique date, time and thread prefix when
a custom file name has not been specified
in the ConvertFileProcessLoggingPath
parameter.

KeepFailedProcessingLoggingFiles Pass as False to disable the automatic
creation of SmartInspect logging files
when conversion fails. This setting can be
overridden by
AlwaysKeepProcessingLoggingFiles.

AlwaysKeepProcessingLoggingFiles When set to True, the SmartInspect
logging files are always created in the %
TEMP% or other specified folder for both
successful and failed conversions. If set to
False, no logging files are created. This
setting will override the
KeepFailedProcessingLoggingFiles
setting.

Examples:

142

Document Conversion Service 3.0

Converting Files with Document Conversion Service

Command Line Utilities

Pass a custom folder and remove the prefix, each run will overwrite the log file C:
\PEERNET\Logs\PNCombineFiles.sil.

/SIL="C:\PEERNET\Logs\\" /D="RemoveDateTimePrefixOnProcessingLoggingFiles:TRUE"

Pass a custom folder and log file name and remove the prefix. Each run will overwrite the logging file
C:\PEERNET\Logs\MyLogFile.sil.

/SIL="C:\PEERNET\Logs\MyLogFile" /D="RemoveDateTimePrefixOnProcessingLoggingFiles:TRUE"

Don't save any SmartInspect log files at all.

/D="AlwaysKeepProcessingLoggingFiles:FALSE"

/T - Alternate Temp Folder

This is an advanced setting that should not be needed in most cases. When converting files, the
conversion tool copies each file and performs the conversion in temporary staging and working folders
created on demand in the default Windows temp folder. When dealing with long path and file names
the default folders created can occasionally cause path names that are too long to process. When this
happens this switch can be used to set the temporary folder to a shorter path to allow processing.

This setting is overridden if the /C option for remote conversion is being used with its own path to a
shared location for conversion.

Examples:

/T="C:\PNTemp\\"

/NAME - Sort Files by Name

The file list picked up from the folder is sorted by file name in ascending order (0-9, A-Z).

/CREATED - Sort Files by Creation Date

The file list picked up from the folder is sorted by the files creation date file name in ascending order
(0-9, A-Z).

/MODIFIED - Sort Files by Modified Date

The file list picked up from the folder is sorted by the files last modifed date file name in ascending
order (0-9, A-Z).

/DESC - Sort Files in Descending Order

Use with /NAME, /CREATED or /MODIFIED. Sorts the files in descending order (Z-A, 9-0).

/? - Display Help

When passed as the only argument this switch will display help for this command.

Document Conversion Service 3.0

143 Converting Files with Document Conversion Service

Command Line Utilities

Folder

The folder containing the files to convert.

· If the path to the folder includes spaces it must be enclosed in quotes.
· If the folder doesn't exist, the conversion will fail.

144

Document Conversion Service 3.0

Converting Files with Document Conversion Service

Command Line Utilities

DCSConvertFolder

A command line utility to walk a folder and convert all files, or all files matching a search filter, using
Document Conversion Service. The utility can optionally also process all subfolders under the starting
folder as well. The Document Conversion Service must be running, either locally or on a remote computer
for the files to be converted. If it is not running the command will return immediately with an error.

Any sorting options applied only control the order in which the files are picked up from the directory.
Sorting does not guarantee the order the files are processed in, only that files sorted to the top of the list
are submitted for conversion first. A smaller file further down the list might finish before a larger file that
was first in the list.

DCSConvertFolder /P=profile [/R] [/F=filter] [/X=exclude filter] [/S=save location]
 [/O] [/NE] [/L] [/D="name:value"] [/E=extension map]
 [/FAIL=failed results log file location] [/SIL=conversion log file path]
 [/W=wait time] [/C=remote computer name;remote scratch folder]
 [/T=alternate temp folder]
 [/NAME=sort files by name] [/CREATED=sort files by creation date]
 [/MODIFIED=sort files by name] [/DESC=sort files in descending order (Z-A, 9-0)]
 folder

Sample Command Lines

Convert all files in a folder to TIFF images:

DCSConvertFolder /P="TIFF 200dpi Monochrome" "C:\Test\Input"

Sends all files in the folder C:\Test\Input to Document Conversion Service to be converted
using the settings contained in the conversion profile TIFF 200dpi Monochrome.xml. Any
folders under C:\Test\Input are not processed.

Upon successful conversion each output file is placed in a folder named .converted created
under the C:\Test\Input folder. Each output file is named using the base name and file
extension of the original file, plus the extension of the file type you are creating.

If a file of that name already exists in the .converted folder the conversion will fail and a .failed
folder will be created under the C:\Test\Input folder. A results log file, ending with
.failed.dcsresults, is created for each failed file and saved to a new subfolder under the .failed
folder. The subfolder is named using the date and time of the conversion to keep subsequent
runs separate.

Convert all files in a folder to TIFF images, wait up to 5 minutes for the conversion service to start:

DCSConvertFolder /P="TIFF 200dpi Monochrome" /W=300 "C:\Test\Input"

Sends all files in the folder C:\Test\Input to Document Conversion Service to be converted
using the settings contained in the conversion profile TIFF 200dpi Monochrome.xml. Any
folders under C:\Test\Input are not processed.

 If Document Conversion Service is not running, wait up to 5 minutes (300 seconds) for the
conversion service to be available.

Document Conversion Service 3.0

145 Converting Files with Document Conversion Service

Command Line Utilities

Convert all files in a folder, including subfolders, to TIFF images in a specific location:

DCSConvertFolder /R /P="TIFF 300dpi OptimizedColor" /S="C:\Test\Output"
 "C:\Test\Input"

Walks the folder C:\Test\Input and any folders underneath and sends all the files found to
Document Conversion Service to be converted using the settings contained in the conversion
profile TIFF 300dpi OptimizedColor.xml.

Upon successful conversion each output file is placed in the C:\Test\Output folder in a directory
structure that mirrors the source folder directory structure.

If a file does not convert, a subfolder named .failed is created in the same location as the input
file. A results log named by appending .failed.dcsresults to the input file name is created and
saved to a new subfolder under the .failed folder. The new subfolder is named using the date
and time of the conversion to keep subsequent runs separate.

To store all of the failed file information in a separate location, see the /FAIL option.

Convert all Word and Excel files in the folder, including subfolders, to vector PDF documents in a
specific location:

DCSConvertFolder /R /F="*.doc|*.docx|*.xls|*.xlsx" /X="12-01*" /S="C:\Test\Output\"
 /P="C:\Test\Adobe PDF Multipage.xml" "C:\Test\Input"

Walks the folder C:\Test\Input and any folders underneath and sends all Word files ending in
.doc and .docx and all Excel files ending in .xls and .xlsx to Document Conversion Service to be
converted to vector PDF using the settings contained in the conversion profile Adobe PDF
Multipage.xml. Any files or folders that begin with "12-01" are excluded.

Upon successful conversion each output file is placed under the C:\Test\Output folder in a
directory structure that mirrors the source folder directory structure.

Failed conversion results logs are is saved in a .failed folder created in the same location as the
source file. A results log named by appending .failed.dcsresults to the input file name is created
and saved to a new subfolder under the .failed folder. The new subfolder is named using the
date and time of the conversion to keep subsequent runs separate.

146

Document Conversion Service 3.0

Converting Files with Document Conversion Service

Command Line Utilities

Convert a folder of documents to vector PDF, overwrite any existing files, and save the results log:

DCSConvertFolder /P="Adobe PDF Multipage" /O /L "C:\Test\Input"

Sends all files in the folder C:\Test\Input to Document Conversion Service to be converted to
vector PDF using the settings contained in the conversion profile Adobe PDF Multipage.xml.
Any folders under C:\Test\Input are not processed.

Upon successful conversion each output file is placed in a folder named .converted created
under the C:\Test\Input folder. Any files of the same name that already exist in that folder are
overwritten.

A conversion results log file for each file converted will be also be saved in the .converted
folder. The name of the results log file is based on the name of the original source file
appended with .succeeded.dcsresults.

Failed conversion results logs are saved in a .failed folder created in the same location as the
source file. A results log named by appending .failed.dcsresults to the input file name is created
and saved to a new subfolder under the .failed folder. The new subfolder is named using the
date and time of the conversion to keep subsequent runs separate.

Convert a folder of documents to vector PDF, strip off the source extension and save the output
and results log files to a specific location:

DCSConvertFolder /R /P="Adobe PDF Multipage" /NE /S="C:\Test\Output"
 /L /FAIL="C:\Test\FailedResults\\" "C:\Test\Input"

Walks the folder C:\Test\Input and any folders underneath and creates vector PDF files from all
documents found. The type of PDF created is controlled by the settings in the conversion profile
Adobe PDF Multipage.xml.

Upon successful conversion each output file is placed under the C:\Test\Output folder in a
directory structure that mirrors the source folder directory structure. The /NE flag causes the
output file to be named using the base name of the original file, plus the extension of the file
type you are creating. If a file of that name already exists in the folder the conversion will fail.

A conversion results log file for each file will be also be saved in the C:\Test\Output folder in the
same mirrored directory structure.The name of the results log file is based on the original
source file and appended with .succeeded.dscresults to indicate its conversion status.

If the conversion did not succeed, the results log is named by appending .failed.dcsresults to
the input file name and placing this file into a subfolder named with the current date and time
created under the specified folder C:\Test\FailedResults.

Note: The double ending backslash used when specifying the folder for the /FAIL switch is
required for the command line path to be parsed correctly.

Use the command line argument D="UseDateTimeInFailedFolder:FALSE" to store the results
log file directly in the folder C:\FailedResults.

Document Conversion Service 3.0

147 Converting Files with Document Conversion Service

Command Line Utilities

Controlling the Number of Documents Processed in Parallel

When converting a folder of files, the number of documents that can be passed in parallel (at the same
time) to Document Conversion Service to be converted is automatically determined based on the number
of CPU's and cores on your system multiplied by 1.5. We recommend that you allow this value to be
determined automatically, but if needed, you can specify exactly how many documents you want to
process in parallel by adding the following line into the profile you are using.

Please note that this value is completely separate from the value of the same name used by the
Document Conversion Service configuration. Also, keep in mind that setting this to a value that is too high
for the capabilities of the computer can cause the computer to work very slowly.

<add Name="NumberOfDocumentsInParallel" Value="10"/>

You can also pass this directly on the command line using the /D option.

DCSConvertFolder /P="TIFF 200dpi Monochrome.xml" /D="NumberOfDocumentsInParallel:6"
 "C:\Test\Input"

148

Document Conversion Service 3.0

Converting Files with Document Conversion Service

Command Line Utilities

Command Line Arguments

Command line switches are not case-sensitive and can be entered in either upper or lower case.

/R - Include Subfolders (Recurse)

Use this switch to also search any subfolders under the source folder when building the list of files to
be passed to Document Conversion Service to be converted.

/F - File Filter

A filter can be provided using this switch to only process certain types of files. Multiple file filters can
be combined using the pipe (|) character. Hidden and system files are ignored, and the search pattern
filters files based on a regular expression match of the long name of a file.

When this switch is not specified all files in the folder are (*.*) passed to Document Conversion
Service to be processed.

Examples:

Convert PDF only: /F="*.pdf"
Convert Word, Excel and PDF only: /F="*.doc|*.docx|*.xls|*.xlsx|*.pdf"
Convert all Word files starting with MEMO: /F="MEMO*.doc"

/X - Exclude File Filter

A exclude file filter can be provided to take the returned file list gathered using the /F file filter and
exclude any files that match a pattern. Multiple patterns can be combined using the pipe (|)
character.By default no files are excluded.

Examples:

Exclude Word and Excel 2010 documents: /X="*.docx|*.xlsx"
Exclude all files starting with "Draft": /X="Draft*.*"

/S - The Save Location

Pass in the full path to the folder in which to save the new files. If the /R switch is used the original
directory structure is maintained.

· If the path includes spaces it must be enclosed in quotes.
· If the path is specified but doesn't exist, the conversion will fail.
· If a file of the same name already exists in the save file location, the conversion will fail.

The /O option can be used to enable file overwriting, which is off by default.

If this argument is not specified, a .converted folder is created in the same location as each source file
and all output files are saved there. On subsequent processing of the same folder with the /R switch
enabled, any .converted folders are ignored.

Example:

/S="C:\Converted Files\Test"

Document Conversion Service 3.0

149 Converting Files with Document Conversion Service

Command Line Utilities

/O - Overwrite Always

Enables overwrite mode so that existing files of the same name are overwritten with the new file. If the
overwrite switch is not specified, the conversion of that file in the list of files will fail if a file of the same
name already exists in the output folder.

/NE - No Extension

Specify this option if you do not want the original file name extension as part of your output file name.
Normally the name of the each output file is created using the base name and file extension of the
original file to prevent name collision when you have two files in the folder with the same base name.

/L - Results Log

The results log file is an XML file containing a complete snapshot of the conversion information for
each file converted. Normally only saved for failed conversions, the /L argument enables creation of
the results log file when the conversion succeeds. The results log file is placed in the same location as
the converted files.

The name of the results log file is based on the name of the original file and also indicates the
conversion status. For example, when converting Document.doc, a successful conversion will create a
log file named Document.doc.succeeded.dcsresults, while a failed conversion would be named
Document.doc.failed.dcsresults.

The results log file for a successful conversion is always copied to the output location with the
converted files when this flag is used.

In the case of a failed conversion, the log file is always created. See the /FAIL switch to control the
location and creation of the failed results log files.

The result log files can later be passed to the DCSExtractResults command line utility to extract
information such as all files created or any errors encountered during conversion. You can search a
folder for the results log files using the DCSCreateFileList utility.

150

Document Conversion Service 3.0

Converting Files with Document Conversion Service

Command Line Utilities

/FAIL - Failed Results Log File Location

In the case of a failed conversion, the conversion results log file is always created. The default
behavior is to create a .failed folder in the same location as the source file and save the conversion
results log file to a new subfolder under the .failed folder. The subfolder is named using the date and
time of the conversion to keep subsequent runs separate.

This argument allows you to override the default use of the .failed folder and to provide a specific
folder in which to store the failed results log files. The name of the results log file is based on the
name of the original file and also indicates the conversion status. For example, when converting
Document.doc, a failed conversion would be named Document.doc.failed.dcsresults.

You can suppress the use of the date and time subfolder by passing the UseDateTimeInFailedFolder
setting using the /D switch.

Note: The double ending backslash used when specifying the folder for the /FAIL switch is required
for the command line path to be parsed correctly.

Examples:

/FAIL="C:\ConvertedFiles\Failed\\" /D="UseDateTimeInFailedFolder:FALSE"

If you do not want to create the failed results log files at all, you can use the /D switch to pass the
KeepFailedItemResultsFiles setting as false.

On the command line:

/D="KeepFailedItemResultsFiles:False"

In a conversion profile:

<add Name="KeepFailedItemResultsFiles" Value="False"/>

The result log files can later be passed to the DCSExtractResults command line utility to extract
information such the source file used or any errors encountered during conversion. You can search a
folder for the results log files using the DCSCreateFileList utility.

/P - Conversion Profile

This is a required argument. The type of file created is controlled by supplying a conversion profile
using this switch. The profiles are referenced by passing in the name of the profile XML file, with or
without the XML extension. See Creating and Customizing Profiles for more information about the
contents of the profiles, a list of profiles included with Document Conversion Service, and how to
create your own.

Examples:

/P="TIFF 300dpi Color Fax"
/P="TIFF 204x196dpi Monochrome Fax.xml"

Document Conversion Service 3.0

151 Converting Files with Document Conversion Service

Command Line Utilities

/D - Define Setting

Individual profile settings can be supplied on the command line using this switch. This switch can be
specified multiple times for separate settings and any settings passed here will override the settings in
the profile.

Any name-value pair that can be written in a profile can be passed through this parameter. This
includes options to control the conversion settings as well as the behavior of the individual converters
as well. See Creating and Customizing Profiles for more information about the name-value pairs that
can be used.

Examples:

These first two are settings that control the converter options, such as what pages to print, and the
output that PowerPoint will print.

/D="PrintRange:1-5"

/D="PowerPoint.PrintOptionsOutputType:PrintOutputNotesPages"

These two settings control the output file creation options, and would override or add to the settings in
the conversion profile passed using the /P switch.

/D="Image Options;Fax Resolution:3"
/D="TIFF File Format;BW compression:Group3-2D"

These two settings control where the failed results log files are created and are most often used along
with the /FAIL switch to control where the results log files are saved.

/D="KeepFailedItemResultsFiles:TRUE"
/D="UseDateTimeInFailedFolder:FALSE"

/E - File Extension Mapping

A file extension mapping profile uses the extension of the source file to determine what converter will
be used to convert the file. Like the conversion profiles, this file is also an XML file. This switch is
optional and an internal default mapping is provided. You would only need to provide this file if you
wanted to override the default file extension to converter mappings provided.

Examples:

/E="Custom Extension To Converter Map"

/W - Wait Time

Use this switch wait to the specified number of seconds for the Document Conversion Service to be
running and available to convert documents. If Document Conversion Service is already running the
command executes immediately. If the Document Conversion Service is not running in the timeout
period specified, the command will return with an error.

If this argument is not specified the command will return immediately with an error if Document
Conversion Service is not running.

Example:

/W=300

152

Document Conversion Service 3.0

Converting Files with Document Conversion Service

Command Line Utilities

/C - Convert on a Remote Computer (DCOM)

If Document Conversion Service is running on a different computer, use this switch to pass the name
of the remote computer and the path of a shared location that both computers have access to.
Separate the name of the remote computer and the path to the shared folder location with a semi-
colon.

When converting remotely, the client redistributable, PNDocConvClientSetup_3.0.exe, must be
installed on the computer running this command line utility. The client setup install program is included
as part of the Document Conversion Service install and can be found in the \Samples\Redist folder in
your product installation folder.

Examples:

/C="DOCCONV_SERVER;\\DOCCONV_SERVER\DCSREMOTE"

Document Conversion Service 3.0

153 Converting Files with Document Conversion Service

Command Line Utilities

/SIL - Smart Inspect Logging File

Smart Inspect Log files are a tracing of the entire conversion process and are not the same as the
conversion results log files created when a conversion fails. These logs can be viewed using the
SmartInspect Redistributable Console included with Document Conversion Service.

These log files are automatically deleted when conversion succeeds. To keep the log files on success
use the custom setting AlwaysKeepProcessingLoggingFiles as shown below.

The default location for this file is the TEMP folder. Each logging file is assigned a unique date, time
and thread prefix followed by "_PNConvertFolder.sil", such as
2014_09_11_2_38_00_PM_4_PNConvertFolder.sil.

Use this argument to specify a custom path and optional file name for the SmartInspect logging file
(*.sil) created by this utility. The /SIL switch can take a folder, or a path to a filename. If a path without
a trailing backslash is provided, the last part of the path is assumed to be a filename.

Note: The double ending backslash used when specifying a folder for the /SIL switch is required for
the command line path to be parsed correctly.

/SIL= Is interpreted as...

"C:\Test\LogFile" Create the SmartInspect log file as C:
\Test\LogFile.sil.

"C:\Test\LogFile\\" Create the SmartInspect log file as C:
\Test\LogFile\datetime_PNConvertFolder.sil

"C:\Test\LogFile\ConvertFileCustom.sil" Create the SmartInspect log file as C:
\Test\LogFile\ConvertFileCustom.sil

The following settings can be used to control the creation and naming of the logging file. These
settings are all passed using the /D switch.

Custom Setting Description

RemoveDateTimePrefixOnProcessingLoggingFiles Pass True to disable the adding of the
unique date, time and thread prefix when
a custom file name has not been specified
in the ConvertFileProcessLoggingPath
parameter.

KeepFailedProcessingLoggingFiles Pass as False to disable the automatic
creation of SmartInspect logging files
when conversion fails. This setting can be
overridden by
AlwaysKeepProcessingLoggingFiles.

AlwaysKeepProcessingLoggingFiles When set to True, the SmartInspect
logging files are always created in the %
TEMP% or other specified folder for both
successful and failed conversions. If set to
False, no logging files are created. This
setting will override the
KeepFailedProcessingLoggingFiles
setting.

Examples:

154

Document Conversion Service 3.0

Converting Files with Document Conversion Service

Command Line Utilities

Pass a custom folder and remove the prefix, each run will overwrite the log file C:
\PEERNET\Logs\PNConvertFolder.sil.

/SIL="C:\PEERNET\Logs\\" /D="RemoveDateTimePrefixOnProcessingLoggingFiles:TRUE"

Pass a custom folder and log file name and remove the prefix. Each run will overwrite the logging file
C:\PEERNET\Logs\MyLogFile.sil.

/SIL="C:\PEERNET\Logs\MyLogFile" /D="RemoveDateTimePrefixOnProcessingLoggingFiles:TRUE"

Don't save any SmartInspect log files at all.

/D="AlwaysKeepProcessingLoggingFiles:FALSE"

/T - Alternate Temp Folder

This is an advanced setting that should not be needed in most cases. When converting files, the
conversion tool copies each file and performs the conversion in temporary staging and working folders
created on demand in the default Windows temp folder. When dealing with long path and file names
the default folders created can occasionally cause path names that are too long to process. When this
happens this switch can be used to set the temporary folder to a shorter path to allow processing.

This setting is overridden if the /C option for remote conversion is being used with its own path to a
shared location for conversion.

Examples:

/T="C:\PNTemp\\"

/NAME - Sort Files by Name

The file list picked up from the folder is sorted by file name in ascending order (0-9, A-Z).

/CREATED - Sort Files by Creation Date

The file list picked up from the folder is sorted by the files creation date file name in ascending order
(0-9, A-Z).

/MODIFIED - Sort Files by Modified Date

The file list picked up from the folder is sorted by the files last modifed date file name in ascending
order (0-9, A-Z).

/DESC - Sort Files in Descending Order

Use with /NAME, /CREATED or /MODIFIED. Sorts the descending order (Z-A, 9-0).

/? - Display Help

When passed as the only argument this switch will display help for this command.

Document Conversion Service 3.0

155 Converting Files with Document Conversion Service

Command Line Utilities

Folder

The folder containing the files to convert.

· If the path to the folder includes spaces it must be enclosed in quotes.
· If the folder doesn't exist, the conversion will fail.

156

Document Conversion Service 3.0

Converting Files with Document Conversion Service

Command Line Utilities

DCSConvertFileList

A command line that accepts a text file containing a list of files to convert, or a list of files provided on the
command line, and converts all files using Document Conversion Service. The Document Conversion
Service must be running, either locally or on a remote computer for the file to be converted. If it is not
running the command will return immediately with an error.

DCSConvertFileList /P=profile [/S=save location] [/O] [/NE] [/L]
 [/E=extension map]
 [/C=remote computer name;remote scratch folder]
 [/D="name:value"] [/W=wait time]
 [/FAIL=failed results log file location] [/SIL=conversion log file path]
 [/I=input text file path]
 [/T=alternate temp folder]
 "file[;save location]" "file[;save location]"...

Document Conversion Service 3.0

157 Converting Files with Document Conversion Service

Command Line Utilities

Sample Command Lines

Convert all files on command line to TIFF images:

DCSConvertFileList /P="TIFF 200dpi Monochrome.xml"
 "C:\Input\File1.doc" "C:\Input2\File2.doc"

Sends the files C:\Input\File1.doc and C:\Input\File2.doc to Document Conversion Service to be
converted using the settings contained in the conversion profile TIFF 200dpi Monochrome.xml.

The converted files, File1.doc.tif and File2.doc.tif, will each be saved in the same location as
their source file.

If a file with the same name already exists, that file conversion would fail. The results log file,
named based on the source file and ending with .doc.failed.dcsresults would be placed in a
folder named .failed created in the same location as the source document. This can be
controlled with the /FAIL switch.

To overwrite an existing file the /O switch would need to be added to the above command. If
you did not want the source file extension as part of your file name, the /NE switch would need
to be added.

Convert all files on command line to TIFF images in their own directory:

DCSConvertFileList /P="TIFF 200dpi Monochrome.xml" "C:\Input\File1.doc;C:\Output1"
 "C:\Input2\File2.doc;C:\Output2"

Sends the files C:\Input\File1.doc and C:\Input\File2.doc to Document Conversion Service to be
converted using the settings contained in the conversion profile TIFF 200dpi Monochrome.xml.

The converted file, File1.doc.tif will be saved to the directory C:\Output1 and File2.doc.tif will be
saved in the directory C:\Output2.

If the output directory does not exist, or if a file with the same name already exists in either
directory, that file conversion will fail. The results log file, named based on the source file and
ending with .doc.failed.dcsresults would be placed in a folder named .failed created in the same
location as each source document. This can be controlled with the /FAIL switch.

To overwrite an existing file the /O switch would need to be added to the above command. If
you did not want the source file extension as part of your file name, the /NE switch would need
to be added.

158

Document Conversion Service 3.0

Converting Files with Document Conversion Service

Command Line Utilities

Convert all files in the input file to TIFF images in a specific location:

DCSConvertFileList /P="TIFF 300dpi OptimizedColor.xml" /S="C:\Test\Output"
 /I="C:\Test\Files.txt"

Sends the files listed in the text file Files.txt to Document Conversion Service to be converted
using the settings contained in the conversion profile TIFF 300dpi OptimizedColor.xml.

Upon successful conversion each output file is placed under the C:\Test\Output folder.

If a file with the same name already exists, that file conversion would fail. The results log file,
named based on the source file and ending with .doc.failed.dcsresults would be placed in a
folder named .failed created in the same location as the source document.

Convert a list of files to vector PDF, strip off the source extension and save the output and results
log files to a specific location:

DCSConvertFileList /P="Adobe PDF Multipage.xml" /NE /S="C:\Test\Output" /L
 /FAIL="C:\Test\FailedLogs\\" /D="UseDateTimeInFailedFolder:FALSE"
 /I="C:\Test\Files.txt"

Creates a PDF file from each file listed in the input file Files.txt. The PDF created is a vector
PDF as controlled by the settings in the conversion profile Adobe PDF Multipage.xml.

Upon successful conversion each output file is placed under the C:\Test\Output folder along
with the conversion results log file. The name of the results log file is based on the original
source file and also indicates the conversion status. For example, if the source file name was
SampleDocument.doc, a results log file, SampleDocument.doc.succeeded.dscresults, will be
created if the conversion succeeds.

The /NE flag causes the output file to be named using the base name of the original file, plus
the extension of the file type you are creating. If a file of that name already exists in the folder
the conversion will fail. If the conversion fails a results log file named based on the source file
and ending with .failed.dcsresults is placed into the folder C:\Test\FailedLogs\ specified by
the /FAIL parameter. The /D setting UseDateTimeInFailedFolder disables the date and time
subfolder creation under the failed logs folder.

Note: The double ending backslash used when specifying the folder for the /FAIL switch is
required for the command line path to be parsed correctly.

Document Conversion Service 3.0

159 Converting Files with Document Conversion Service

Command Line Utilities

Command Line Arguments

Command line switches are not case-sensitive and can be entered in either upper or lower case.

/S - The Save Location

Pass in the full path to the folder in which to save the new files. If the save location is not specified the
new file is created in the same folder as the source file. If the files listed in the input file text file
specified with the /I switch also include save locations, those locations will be used instead.

· If the path includes spaces it must be enclosed in quotes.
· If the path doesn't exist, the conversion will fail.
· If a file of the same name already exists in the save file location, the conversion will fail.

The /O option can be used to enable file overwriting, which is off by default.

Example:

/S="C:\Converted Files\Test"

/O - Overwrite Always

Enables overwrite mode so that existing files of the same name are overwritten with the new file. If the
overwrite switch is not specified, the conversion of that file in the list of files will fail if a file of the same
name already exists in the output folder.

/NE - No Extension

If you do not want the original file name extension as part of your output file name, use this switch to
remove the file extension.

/L - Results Log

The results log file is an XML file containing a complete snapshot of the conversion information.
Normally only saved for failed conversions, the /L argument enables creation of the results log file
when the conversion succeeds. The results log file is placed in the same location as the converted
files.

The name of the results log file is based on the name of the original file and also indicates the
conversion status. For example, when converting Document.doc, a successful conversion will create a
log file named Document.doc.succeeded.dcsresults, while a failed conversion would be named
Document.doc.failed.dcsresults.

The results log file for a successful conversion is always copied to the output location with the
converted files when this flag is used.

In the case of a failed conversion, the log file is always created. See the /FAIL switch to control the
location and creation of the failed results log files.

The result log files can later be passed to the DCSExtractResults command line utility to extract
information such as all files created or any errors encountered during conversion. You can search a
folder for the results log files using the DCSCreateFileList utility.

160

Document Conversion Service 3.0

Converting Files with Document Conversion Service

Command Line Utilities

/FAIL - Failed Results Log File Location

In the case of a failed conversion, the conversion results log file is always created. The default
behavior is to create a .failed folder in the same location as the source file and save the conversion
results log file to a new subfolder under the .failed folder. The subfolder is named using the date and
time of the conversion to keep subsequent runs separate.

This argument allows you to override the default use of the .failed folder and to provide a specific
folder in which to store the failed results log files. The name of the results log file is based on the
name of the original file and also indicates the conversion status. For example, when converting
Document.doc, a failed conversion would be named Document.doc.failed.dcsresults.

You can suppress the use of the date and time subfolder by passing the UseDateTimeInFailedFolder
setting using the /D switch.

Note: The double ending backslash used when specifying the folder for the /FAIL switch is required
for the command line path to be parsed correctly.

Examples:

/FAIL="C:\ConvertedFiles\Failed\\" /D="UseDateTimeInFailedFolder:FALSE"

If you do not want to create the failed results log files at all, you can use the /D switch to pass the
KeepFailedItemResultsFiles setting as false.

On the command line:

/D="KeepFailedItemResultsFiles:False"

In a conversion profile:

<add Name="KeepFailedItemResultsFiles" Value="False"/>

The result log files can later be passed to the DCSExtractResults command line utility to extract
information such the source file used or any errors encountered during conversion. You can search a
folder for the results log files using the DCSCreateFileList utility.

/P - Conversion Profile

This is a required argument. The type of file created is controlled by supplying a conversion profile
using this switch. The profiles are referenced by passing in the name of the profile XML file, with or
without the XML extension. See Creating and Customizing Profiles for more information about the
contents of the profiles, a list of profiles included with Document Conversion Service, and how to
create your own.

Examples:

/P="TIFF 300dpi Color Fax"
/P="TIFF 204x196dpi Monochrome Fax.xml"

Document Conversion Service 3.0

161 Converting Files with Document Conversion Service

Command Line Utilities

/D - Define Setting

Individual conversion and profile settings can be supplied on the command line using this switch. This
switch can be specified multiple times for separate settings and any settings passed here will override
the settings in the profile.

Any name-value pair that can be written in a profile can be passed through this parameter. This
includes options to control the conversion settings as well as the behavior of the individual converters
as well. See Creating and Customizing Profiles for more information about the name-value pairs that
can be used.

Examples:

These first two are settings that control the converter options, such as what pages to print, and the
output that PowerPoint will print.

/D="PrintRange:1-5"

/D="PowerPoint.PrintOptionsOutputType:PrintOutputNotesPages"

These two settings control the output file creation options, and would override or add to the settings in
the conversion profile passed using the /P switch.

/D="Image Options;Fax Resolution:3"
/D="TIFF File Format;BW compression:Group3-2D"

These two settings control where the failed results log files are created and are most often used along
with the /FAIL switch to control where the results log files are saved.

/D="KeepFailedItemResultsFiles:TRUE"
/D="UseDateTimeInFailedFolder:FALSE"

/E - File Extension Mapping

A file extension mapping profile uses the extension of the source file to determine what converter will
be used to convert the file. Like the conversion profiles, this file is also an XML file. This switch is
optional and an internal default mapping is provided. You would only need to provide this file if you
wanted to override the default file extension to converter mappings provided.

Examples:

/E="Custom Extension To Converter Map"

/W - Wait Time

Use this switch wait to the specified number of seconds for the Document Conversion Service to be
running and available to convert documents. If Document Conversion Service is already running the
command executes immediately. If the Document Conversion Service is not running in the timeout
period specified, the command will return with an error.

If this argument is not specified the command will return immediately with an error if Document
Conversion Service is not running.

Example:

/W=300

162

Document Conversion Service 3.0

Converting Files with Document Conversion Service

Command Line Utilities

/SIL - Smart Inspect Logging File

Smart Inspect Log files are a tracing of the entire conversion process and are not the same as the
conversion results log files created when a conversion fails. These logs can be viewed using the
SmartInspect Redistributable Console included with Document Conversion Service.

These log files are automatically deleted when conversion succeeds. To keep the log files on success
use the custom setting AlwaysKeepProcessingLoggingFiles as shown below.

The default location for this file is the TEMP folder. Each logging file is assigned a unique date, time
and thread prefix followed by "_PNConvertFileList.sil", such as
2014_09_11_2_38_00_PM_4_PNConvertFileList.sil.

Use this argument to specify a custom path and optional file name for the SmartInspect logging file
(*.sil) created by this utility. The /SIL switch can take a folder, or a path to a filename. If a path without
a trailing backslash is provided, the last part of the path is assumed to be a filename.

Note: The double ending backslash used when specifying a folder for the /SIL switch is required for
the command line path to be parsed correctly.

/SIL= Is interpreted as...

"C:\Test\LogFile" Create the SmartInspect log file as C:
\Test\LogFile.sil.

"C:\Test\LogFile\\" Create the SmartInspect log file as C:
\Test\LogFile\datetime_PNConvertFileList.sil

"C:\Test\LogFile\ConvertFileCustom.sil" Create the SmartInspect log file as C:
\Test\LogFile\ConvertFileCustom.sil

The following settings can be used to control the creation and naming of the logging file. These
settings are all passed using the /D switch.

Custom Setting Description

RemoveDateTimePrefixOnProcessingLoggingFiles Pass True to disable the adding of the
unique date, time and thread prefix when
a custom file name has not been specified
in the ConvertFileProcessLoggingPath
parameter.

KeepFailedProcessingLoggingFiles Pass as False to disable the automatic
creation of SmartInspect logging files
when conversion fails. This setting can be
overridden by
AlwaysKeepProcessingLoggingFiles.

AlwaysKeepProcessingLoggingFiles When set to True, the SmartInspect
logging files are always created in the %
TEMP% or other specified folder for both
successful and failed conversions. If set to
False, no logging files are created. This
setting will override the
KeepFailedProcessingLoggingFiles
setting.

Examples:

Document Conversion Service 3.0

163 Converting Files with Document Conversion Service

Command Line Utilities

Pass a custom folder and remove the prefix, each run will overwrite the log file C:
\PEERNET\Logs\PNConvertFileList.sil.

/SIL="C:\PEERNET\Logs\\" /D="RemoveDateTimePrefixOnProcessingLoggingFiles:TRUE"

Pass a custom folder and log file name and remove the prefix. Each run will overwrite the logging file
C:\PEERNET\Logs\MyLogFile.sil.

/SIL="C:\PEERNET\Logs\MyLogFile" /D="RemoveDateTimePrefixOnProcessingLoggingFiles:TRUE"

Don't save any SmartInspect log files at all.

/D="AlwaysKeepProcessingLoggingFiles:FALSE"

/I - Input text file path

The collection of files to be converted can be passed as a text file containing a list of files, one each
per line. Optionally you can specify individual save locations for each file by listing the file and
directory, separated by a semi-colon(;) on each line. The full path or a UNC path to the source file and
optional directory must be given for the files listed in the input text file and as command line
arguments; relative paths are not supported.

The input text file should follow the following format:

C:\Input\WordFiles\File1.doc
C:\Input\WordFiles\File2.docx;C:\OutputPath\WordFiles\
C:\Input\PDF\File3.pdf;C:\OutputPath\PDFFIles\
\\server\share\Input\scans\scan1.tif

/C - Convert on a Remote Computer (DCOM)

If Document Conversion Service is running on a different computer, use this switch to pass the name
of the remote computer and the path of a shared location that both computers have access to.
Separate the name of the remote computer and the path to the shared folder location with a semi-
colon.

When converting remotely, the client redistributable, PNDocConvClientSetup_3.0.exe, must be
installed on the computer running this command line utility. The client setup install program is included
as part of the Document Conversion Service install and can be found in the \Samples\Redist folder in
your product installation folder.

Examples:

/C="DOCCONV_SERVER;\\DOCCONV_SERVER\DCSREMOTE"

164

Document Conversion Service 3.0

Converting Files with Document Conversion Service

Command Line Utilities

/T - Alternate Temp Folder

This is an advanced setting that should not be needed in most cases. When converting files, the
conversion tool copies each file and performs the conversion in temporary staging and working folders
created on demand in the default Windows temp folder. When dealing with long path and file names
the default folders created can occasionally cause path names that are too long to process. When this
happens this switch can be used to set the temporary folder to a shorter path to allow processing.

This setting is overridden if the /C option for remote conversion is being used with its own path to a
shared location for conversion.

Examples:

/T="C:\PNTemp\\"

/? - Display Help

When passed as the only argument this switch will display help for this command.

file[;save location]

The full path to the file to convert. You can list more than one on the command line. Like the input text
file, you can pass in a semi-colon(;) separated file-directory pair here as well.

· If the path to the file includes spaces it must be enclosed in quotes.
· If the file doesn't exist, the conversion will fail.

Document Conversion Service 3.0

165 Converting Files with Document Conversion Service

Command Line Utilities

DCSConvertFile

A command line utility to convert a file using Document Conversion Service. The Document Conversion
Service must be running, either locally or on a remote computer for the file to be converted. If it is not
running the command will return immediately with an error.

DCSConvertFile /P=profile [/S=save location] [/N=output name] [/O] [/NE] [/L]
 [/D="name:value"] [/E=extension map]
 [/W=wait time] [/FAIL=failed results log file location]
 [/SIL=conversion log file path]
 [/C=remote computer name;remote scratch folder]
 [/T=alternate temp folder]
 sourcefile

Sample Command Lines

Convert a single file to a TIFF:

DCSConvertFile /P="TIFF 200dpi Monochrome" "C:\Test\Document.doc"

Send the file C:\Test\Document.doc to Document Conversion Service to be converted using the
settings contained in the conversion profile TIFF 200dpi Monochrome.xml.

The converted file, Document.doc.tif, is saved in C:\Test\, the same location as the source file.

If a file of the same name already existed, this conversion would fail and a .failed folder would
be created in the same location as the source document, C:\Test. The results log would be
named Document.doc.failed.dcsresults and saved to a new subfolder under the .failed folder.
The subfolder is named using the date and time of the conversion to keep subsequent runs
separate.

To overwrite an existing file the /O switch would need to be added to the above command. If
you did not want the source file extension as part of your file name, the /NE switch would need
to be added.

Convert a single file to a TIFF with a specific output name, overwrite existing files:

DCSConvertFile /O /N="Opt_Document" /P="TIFF 300dpi OptimizedColor"
 "C:\Test\Document.doc"

Send the file C:\Test\Document.doc to Document Conversion Service to be converted using the
settings contained in the conversion profile TIFF 300dpi OptimizedColor.xml.

The converted file will be named Opt_Document.tif and saved in the same location as the
source file. If a file of the same name already existed, this file would be overwritten with the new
file.

166

Document Conversion Service 3.0

Converting Files with Document Conversion Service

Command Line Utilities

Convert a single file to a TIFF in a specific location:

DCSConvertFile /S="C:\Output" /P="TIFF 200dpi Monochrome" "C:\Test\Document.doc"

Send the file C:\Test\Document.doc to Document Conversion Service to be converted using the
settings contained in the conversion profile TIFF 200dpi Monochrome.xml.

The converted file will be named Document.doc.tif and placed in the folder named C:\Output.

If a file of the same name already existed, this conversion would fail and a .failed folder would
be created in the same location as the source document, C:\Test. The results log would be
named Document.doc.failed.dcsresults and saved to a new subfolder under the .failed folder.
The subfolder is named using the date and time of the conversion to keep subsequent runs
separate.

Document Conversion Service 3.0

167 Converting Files with Document Conversion Service

Command Line Utilities

Convert a single file to a TIFF in a specific location, wait up to 5 minutes for the conversion service
to start:

DCSConvertFile /S="C:\Output" /P="TIFF 200dpi Monochrome" /W=300
 "C:\Test\Document.doc"

Send the file C:\Test\Document.doc to Document Conversion Service to be converted using the
settings contained in the conversion profile TIFF 200dpi Monochrome.xml. If Document
Conversion Service is not running, wait up to 5 minutes (300 seconds) for the conversion
service to be available.

The converted file will be named Document.doc.tif and placed in the folder named C:\Output.

If a file of the same name already existed, this conversion would fail and a .failed folder would
be created in the same location as the source document, C:\Test. The results log would be
named Document.doc.failed.dcsresults and saved to a new subfolder under the .failed folder.
The subfolder is named using the date and time of the conversion to keep subsequent runs
separate.

Convert a single file to a vector PDF document, remove source extension and save the
conversion results log file:

DCSConvertFile /P="Adobe PDF Multipage" /L /NE "C:\Test\Document.doc"

 /FAIL="C:\Test\FailedLogs\\" /D="UseDateTimeInFailedFolder:FALSE"

Send the file C:\Test\Document.doc to Document Conversion Service to be converted using the
settings contained in the conversion profile Adobe PDF Multipage.xml. This profile creates
vector PDF where possible.

The converted file will be named Document.doc.pdf and saved in the same location as the
source file. A conversion results log file, Document.doc.succeeded.dcsresults will also be
saved in same location as the source file.

If a file of the same name already existed, this conversion would fail. The results log would be
named Document.doc.failed.dcsresults and would be saved in the C:\Test\FailedLogs\ folder.
The /D setting UseDateTimeInFailedFolder disables the date and time subfolder creation under
the failed logs folder.

Note: The double ending backslash used when specifying the folder for the /FAIL switch is
required for the command line path to be parsed correctly.

To overwrite an existing file the /O flag would need to be added to the above command.

168

Document Conversion Service 3.0

Converting Files with Document Conversion Service

Command Line Utilities

Convert a single file to a vector PDF document, save the output to a specific location and save the
conversion results log file:

DCSConvertFile /S="C:\Output" /N="NewFileName" /L /O
 /P="Adobe PDF Multipage" "C:\Test\Document.doc"

Creates a PDF document from the source file C:\Test\Document.doc. The type of PDF created
is controlled by the settings in the conversion profile Adobe PDF Multipage.xml. This profile
creates vector PDF where possible.

The converted file will be named NewFileName.pdf and saved in the C:\Output folder. If a file of
the same name already exists in C:\Output\ this file would be overwritten with the new file.

A conversion results log file, Document.doc.succeeded.dcsresults will also be created in the C:
\Output folder.

If the conversion did not succeed, the results log would be named
Document.doc.failed.dcsresults and a .failed folder would be created in the same location as
the source document, C:\Test. The results log would be named Document.doc.failed.dcsresults
and saved to a new subfolder under the .failed folder. The subfolder is named using the date
and time of the conversion to keep subsequent runs separate.

Convert a single file to a PDF document, save both the output and any failed conversion results
log file to custom locations :

DCSConvertFile /S="C:\Output" /N="NewFileName" /L /O
 /P="PDF A-1b 300dpi OptimizedColor"
 /FAIL="C:\FailedResults\\" "C:\Test\Document.doc"

Creates a PDF document from the source file C:\Test\Document.doc. The type of PDF created
is controlled by the settings in the conversion profile PDF A-1b 300dpi OptimizedColor.xml.

The converted file will be named NewFileName.pdf and saved in the C:\Output folder. If a file of
the same name already exists in C:\Output\ this file would be overwritten with the new file as
specified by the /O argument.

A conversion results log file, Document.doc.succeeded.dcsresults will be created in the C:
\FailedResults folder if the conversion does not succeed. The results log is named
Document.doc.failed.dcsresults and placed in a subfolder named with the current date and time
created under the specified folder.

Note: The double ending backslash used when specifying the folder for the /FAIL switch is
required for the command line path to be parsed correctly.

Use the command line argument D="UseDateTimeInFailedFolder:FALSE" to store the results
log file directly in the folder C:\FailedResults.

Document Conversion Service 3.0

169 Converting Files with Document Conversion Service

Command Line Utilities

Command Line Arguments

Command line switches are not case-sensitive and can be entered in either upper or lower case.

/S - The Save Location

Pass in the full path to the folder in which to save the new file. If the save location is not specified the
new file is created in the same folder as the source file.

· If the path includes spaces it must be enclosed in quotes.
· If the path doesn't exist, the conversion will fail.
· If a file of the same name already exists in the save file location, the conversion will fail.

The /O option can be used to enable file overwriting, which is off by default.

Example:

/S="C:\Converted Files\Test"

/N - Output File Name

The name to use for the output file. The default file extension for the type of file being created will
always be added to the name provided here.

If this argument is not specified the name of the source file, including the extension is used. This
prevents name collision when you have two different files with the same base name, such as abc.doc
and abc.pdf. If you were converting to multipaged TIFF images the resulting converted files would be
named abc.doc.tif and abc.pdf.tif.

If you do not want the original file name extension as part of your file name, use the /NE switch to
remove the file extension.

If serialized files, such as JPEG images, are being created, the base name will be appended with the
page number, SampleDocument_0001.jpg, SampleDocument_002.jpg, etc.

Example:

/N="SampleDocument_06_15_2012"

/O - Overwrite Always

Enables overwrite mode so that existing files of the same name are overwritten with the new file.
When not specified the conversion will fail if a file of the same name already exists in the output folder.

/NE - No Extension

If you do not want the original file name extension as part of your output file name, use this switch to
remove the file extension. If you have provided an output name with the /N switch above, this
argument is ignored.

170

Document Conversion Service 3.0

Converting Files with Document Conversion Service

Command Line Utilities

/L - Results Log

The results log file is an XML file containing a complete snapshot of the conversion information.
Normally only saved for failed conversions, the /L argument enables creation of the results log file
when the conversion succeeds.

The name of the results log file is based on the name of the original file and also indicates the
conversion status. For example, when converting Document.doc, a successful conversion will create a
log file named Document.doc.succeeded.dcsresults., while a failed conversion would be named
Document.doc.failed.dcsresults.

The results log file for a successful conversion is always copied to the output location with the
converted files when this flag is used.

In the case of a failed conversion, the log file is always created. See the /FAIL switch to control the
location and creation of the failed results log files.

The result log files can later be passed to the DCSExtractResults command line utility to extract
information such as all files created or any errors encountered during conversion. You can search a
folder for the results log files using the DCSCreateFileList utility.

/FAIL - Failed Results Log File Location

In the case of a failed conversion, the conversion results log file is always created. The default
behavior is to create a .failed folder in the same location as the source file and save the conversion
results log file to a new subfolder under the .failed folder. The subfolder is named using the date and
time of the conversion to keep subsequent runs separate.

This argument allows you to override the default use of the .failed folder and to provide a specific
folder in which to store the failed results log files. The name of the results log file is based on the
name of the original file and also indicates the conversion status. For example, when converting
Document.doc, a failed conversion would be named Document.doc.failed.dcsresults.

You can suppress the use of the date and time subfolder by passing the UseDateTimeInFailedFolder
setting using the /D switch.

If you do not want to create the failed results log files at all, you can use the /D switch to pass the
KeepFailedItemResultsFiles setting as false. These settings can also be added to any conversion
profile you are using.

The result log files can later be passed to the DCSExtractResults command line utility to extract
information such the source file used or any errors encountered during conversion. You can search a
folder for the results log files using the DCSCreateFileList utility.

Note: The double ending backslash used when specifying the folder for the /FAIL switch is required
for the command line path to be parsed correctly.

Examples:

/FAIL="C:\ConvertedFiles\Failed\\" /D="UseDateTimeInFailedFolder:FALSE"

Document Conversion Service 3.0

171 Converting Files with Document Conversion Service

Command Line Utilities

/P - Conversion Profile

This is a required argument. The type of file created is controlled by supplying a conversion profile
using this switch. The profiles are referenced by passing in the name of the profile XML file, with or
without the XML extension. See Creating and Customizing Profiles for more information about the
contents of the profiles, a list of profiles included with Document Conversion Service, and how to
create your own.

Examples:

/P="TIFF 300dpi Color Fax"
/P="TIFF 204x196dpi Monochrome Fax.xml"

/D - Define Setting

Individual conversion and profile settings can be supplied on the command line using this switch. This
switch can be specified multiple times for separate settings and any settings passed here will override
the settings in the profile.

Any name-value pair that can be written in a profile can be passed through this parameter. This
includes options to control the conversion settings as well as the behavior of the individual converters
as well. See Creating and Customizing Profiles for more information about the name-value pairs that
can be used.

Examples:

These first two are settings that control the converter options, such as what pages to print, and the
output that PowerPoint will print.

/D="PrintRange:1-5"
/D="PowerPoint.PrintOptionsOutputType:PrintOutputNotesPages"

These two settings control the output file creation options, and would override or add to the settings in
the conversion profile passed using the /P switch.

/D="Image Options;Fax Resolution:3"
/D="TIFF File Format;BW compression:Group3-2D"

These two settings control the where the failed results log files are created and are most often used
along with the /FAIL switch to control where the results log files are saved.

/D="KeepFailedItemResultsFiles:TRUE"
/D="UseDateTimeInFailedFolder:FALSE"

/E - File Extension Mapping

A file extension mapping profile uses the extension of the source file to determine what converter will
be used to convert the file. Like the conversion profiles, this file is also an XML file. This switch is
optional and an internal default mapping is provided. You would only need to provide this file if you
wanted to override the default file extension to converter mappings provided.

Examples:

/E="Custom Extension To Converter Map"

172

Document Conversion Service 3.0

Converting Files with Document Conversion Service

Command Line Utilities

/W - Wait Time

Use this switch to wait to the specified number of seconds for the Document Conversion Service to be
running and available to convert documents. If Document Conversion Service is already running the
command executes immediately. If the Document Conversion Service is not running in the timeout
period specified, the command will return with an error.

If this argument is not specified the command will return immediately with an error if Document
Conversion Service is not running.

Example:

/W=300

/C - Convert on a Remote Computer (DCOM)

If Document Conversion Service is running on a different computer, use this switch to pass the name
of the remote computer and the path of a shared location that both computers have access to.
Separate the name of the remote computer and the path to the shared folder location with a semi-
colon.

When converting remotely, the client redistributable, PNDocConvClientSetup_3.0.exe, must be
installed on the computer running this command line utility. The client setup install program is included
as part of the Document Conversion Service install and can be found in the \Samples\Redist folder in
your product installation folder.

Examples:

/C="DOCCONV_SERVER;\\DOCCONV_SERVER\DCSREMOTE"

Document Conversion Service 3.0

173 Converting Files with Document Conversion Service

Command Line Utilities

/SIL - Smart Inspect Logging File

Smart Inspect Log files are a tracing of the entire conversion process and are not the same as the
conversion results log files created when a conversion fails. These logs can be viewed using the
SmartInspect Redistributable Console included with Document Conversion Service.

These log files are automatically deleted when conversion succeeds. To keep the log files on success
use the custom setting AlwaysKeepProcessingLoggingFiles as shown below.

The default location for this file is the TEMP folder. Each logging file is assigned a unique date, time
and thread prefix followed by "_PNConvertFile.sil", such as
2014_09_11_2_38_00_PM_4_PNConvertFile.sil.

Use this argument to specify a custom path and optional file name for the SmartInspect logging file
(*.sil) created by this utility. The /SIL switch can take a folder, or a path to a filename. If a path without
a trailing backslash is provided, the last part of the path is assumed to be a filename.

Note: The double ending backslash used when specifying a folder for the /SIL switch is required for
the command line path to be parsed correctly.

/SIL= Is interpreted as...

"C:\Test\LogFile" Create the SmartInspect log file as C:
\Test\LogFile.sil.

"C:\Test\LogFile\\" Create the SmartInspect log file as C:
\Test\LogFile\datetime_PNConvertFile.sil

"C:\Test\LogFile\ConvertFileCustom.sil" Create the SmartInspect log file as C:
\Test\LogFile\ConvertFileCustom.sil

The following settings can be used to control the creation and naming of the logging file. These
settings are all passed using the /D switch.

Custom Setting Description

RemoveDateTimePrefixOnProcessingLoggingFiles Pass True to disable the adding of the
unique date, time and thread prefix when
a custom file name has not been specified
in the ConvertFileProcessLoggingPath
parameter.

KeepFailedProcessingLoggingFiles Pass as False to disable the automatic
creation of SmartInspect logging files
when conversion fails. This setting can be
overridden by
AlwaysKeepProcessingLoggingFiles.

AlwaysKeepProcessingLoggingFiles When set to True, the SmartInspect
logging files are always created in the %
TEMP% or other specified folder for both
successful and failed conversions. If set to
False, no logging files are created. This
setting will override the
KeepFailedProcessingLoggingFiles
setting.

Examples:

174

Document Conversion Service 3.0

Converting Files with Document Conversion Service

Command Line Utilities

Pass a custom folder and remove the prefix, each run will overwrite the log file C:
\PEERNET\Logs\PNConvertFile.sil.

/SIL="C:\PEERNET\Logs\\" /D="RemoveDateTimePrefixOnProcessingLoggingFiles:TRUE"

Pass a custom folder and log file name and remove the prefix. Each run will overwrite the logging file
C:\PEERNET\Logs\MyLogFile.sil.

/SIL="C:\PEERNET\Logs\MyLogFile" /D="RemoveDateTimePrefixOnProcessingLoggingFiles:TRUE"

Don't save any SmartInspect log files at all.

/D="AlwaysKeepProcessingLoggingFiles:FALSE"

/T - Alternate Temp Folder

This is an advanced setting that should not be needed in most cases. When converting a file, the
conversion tool copies the file and performs the conversion in temporary staging and working folders
created on demand in the default Windows temp folder. When dealing with long path and file names
the default folders created can occasionally cause path names that are too long to process. When this
happens this switch can be used to set the temporary folder to a shorter path to allow processing.

This setting is overridden if the /C option for remote conversion is being used with its own path to a
shared location for conversion.

Examples:

/T="C:\PNTemp\\"

/? - Display Help

When passed as the only argument this switch will display help for this command.

Source File

The full path to the file to convert.

· If the path to the file includes spaces it must be enclosed in quotes.
· If the file doesn't exist, the conversion will fail.

Document Conversion Service 3.0

175 Converting Files with Document Conversion Service

Command Line Utilities

DCSLicenseDaysLeft

A command line utility to echo to the command line the current license level and the number of days
remaining in the subscription period. The information extracted is sent to standard out. This command line
tool needs no arguments or parameters.

The command line tool reports as follows:

Level Edition; # days

A Level I license with 200 days remaining would see the following:

Level I Edition; 200 days

An expired license reports its expired state:

Level I Edition; 0 days [EXPIRED}

176

Document Conversion Service 3.0

Converting Files with Document Conversion Service

The Watch Folder Service

The Watch Folder Service

The Watch Folder Service is a Windows service for converting files from "hot" folders. These are
sometimes also called "drop" folders. The service will watch one or more folders at a time and convert any
files dropped into those folders to the format specified for that folder. This gives you the freedom to do
such tasks as watch two separate folders and create black and white TIFF images out of the files dropped
in the first folder, and color TIFF images from files dropped in the other folder. This can be expanded to
watch as many folders as needed.

The service is installed as part of the Document Conversion Service install and is configured to use the
same user account as the PEERNET Document Conversion Service Monitor 1.0 specified during
installation. This service requires a privileged user account to be able to access shared volumes and to
allow for remote conversion.

This application is also provided as a Visual Studio project in C#.NET and demonstrates using
PNDocConvQueueServiceLib from a service in a multithreaded environment.

High Performance Clustering and Failover (DCS 3.0.010)

Clustering allows more than one computer to process against the same group of files. This group of
servers all working on the same set of files is called a cluster. This type of configuration allows for an
increase in conversion speed and provides fail over support if a server in the cluster needs to be restarted.
The other servers in the cluster will continue to convert files. This is explained in more detail in High
Performance Clustering and Fail Over Conversion.

Large Volume Batch Conversion Using Clustering (DCS 3.0.010)

Extremely large folders of files can be processed efficiently using clustering on a single computer. The
same technique that allows multiple computers to process from a shared location also allows a single
computer to efficiently work its way through a large folder of documents. See Large Volume Batch
Conversion Using Clustering for details.

Outlook and EML Message Archives (DCS 3.0.009, 3.0.029)

Each folder section can be configured to extract and convert all attachments in Outlook Message (*.msg)
archives as well as the message itself. See Processing Outlook and EML Mail Messages and Attachments
for full details.

Post Conversion Processing (DCS 3.0.010)

Each watch folder can optionally run a command at the end of the conversion process. Commands are
run on each created file for successful conversions, and on the original source file in the case of a failed
conversion. See Post-Conversion Processing for more information.

Folder Flattening and Unique File Names (DCS 3.0.019)

Each watch folder's default behavior is to maintain any folder structure found in the input folder when
creating the converted files in the Output folder. If desired, this input folder structure can be ignored, or
flattened, when creating files in the output folder. To prevent filename collision and overwrite issues,
options to automatically create unique filenames using Globally Unique Identifiers (GUIDs) can be used.
See Unique File Naming and Flat Folder Structures for an example.

Creating Done Files to Signal Completion

Added in version 3.0.025, this allows for the creation of a done file for each file converted, or a failed file if
the conversion fails. The file lists the path to the input file that was converted, followed by a list of the files
created. This file is not created until conversion is complete or failed and can be used to signal completed
to other processes. See Creating Done Files to Signal Completion for more details.

Picking up Files in Sort Order

Document Conversion Service 3.0

177 Converting Files with Document Conversion Service

The Watch Folder Service

Added in version 3.0.027, this allows for the files be picked and converted in order by Name (default),
DateModified or DateCreated and None. If the sorting mode is set to None then no ordering is applied to
the list of files returned from the underlying file system. The sort order can be Ascending (default) or
Descending. See Control Sort Order on File Pickup for more details.

Files in the root of the input folder are picked up and sorted first. Then, if enabled, any subfolders, in
alphabetical order, are searched for files to convert. The file list for each subfolder is returned in the
requested sort mode and added to the list of files to convert.

178

Document Conversion Service 3.0

Converting Files with Document Conversion Service

The Watch Folder Service

Sample Conversion Folders

The Watch Folder Service is pre-configured to create several example conversion folders for the following
common conversion types and scenarios:

ConvertToTIFF Creates 300 DPI Optimized TIFF images.

ConvertToFaxTIFF Creates 204x196 DPI Monochrome faxable TIFF images.

ConvertToAdobePDF Creates, where possible, vector (searchable) Adobe PDF files. If you need to
keep the hyperlinks in your documents when creating PDF files, you'll want
to use this folder.

ConvertToRasterPDF Creates PDF files where each page is an image, similar to a scanned image.
Good for archiving as the page content cannot be changed.

ConvertToJPG Creates color JPG images at 300 DPI. One image is created for each page
of each document.

LargeBatchTIFF This folder is configured to allow dropping a large number of files at once
into it's input folder. The files are then picked in small batches of up to 10
files until all files in the folder have been converted.

For a more in-depth explanation of converting an existing folder containing a
very large number of files, look at Large Volume Batch Conversion with
Watch Folder Service.

Clustered
ConvertToTIFF

This folder is pre-configured for clustered processing using a shared folder
that is created as part of the installation. It creates 300 DPI Optimized TIFF
images. See High Performance Clustering and Fail Over Conversion.

Document Conversion Service 3.0

179 Converting Files with Document Conversion Service

The Watch Folder Service

Running the Watch Folder Service

· Watch Folder Service Overview

· Starting and Stopping the Watch Folder Service

· Configure the Watch Folder Service

· High Performance Clustering and Fail Over Conversion

· Long Path Name Support

· Skipping Files with the Passthrough Converter

· Processing Outlook and EML Mail Messages and Attachments

· Creating Done Files to Signal Completion

· Control Sort Order on File Pickup

· Post-Conversion Processing

· Large Volume Batch Conversion Using Clustering

· Large Volume Batch Conversion Using Synchronous File Pickup

180

Document Conversion Service 3.0

Converting Files with Document Conversion Service

The Watch Folder Service

Watch Folder Service Overview

The following is an overview of how the Watch Folder Service works.

For each folder watched, the service uses the following:

· an enabled flag that determines if the folder will be monitored or not

· an input folder to collect the files to be converted based on a search pattern and optional sub-
directory inclusion

· a staging folder to hold the files being processed

· a working folder that holds the output files during creation

· an output folder, which is the final destination of the created files; they are copied into this folder
when conversion is complete

· a failed folder that contains a copy of any file which failed to be converted

· an optional completed folder to hold a copy of all input files that have been processed

· options to control the number of files picked up at a time and if batches are run synchronously

· options to extract and process attachments from Outlook MSG archive files

· how files are stored in the completed and failed folders

The input folders are polled on a customizable time interval looking for files or folders to convert. If any
files or folders of files are dropped into the input folder that meet the criteria of what files you want to
convert, these files, or the number of files allowed, are moved into a uniquely named folder (based on date
and time) under the staging folder.

When a folder is dropped into the input location, it searches for files that match the criteria. If any matching
files are found in the folder, the folder's structure is mirrored under the new folder in the staging location
and the files copied for conversion. During all subsequent steps of copying to the output folder, failed
folder or completed folder the folder's structure is kept intact.

Once under the staging folder, the files are passed to Document Conversion Service to be converted
using the output format settings provided for that watch folder. Putting files in this staging folder prevents
file name collisions if another file of the same name is dropped into the folder by another user.

Converted files are stored first in the working folder while they are being created. Once complete, they are
copied into the output folder. If any file should fail to convert a folder under the failed folder (using the
same date and time stamped folder name as was created under the staging folder) is created and the
failed file is copied there.

If the completed folder is specified, all source files are copied to a new folder (using the same date and
time stamped folder name as was created under the staging folder) under the completed folder. If the
completed folder is not specified, the source files are deleted.

If you do not want your completed and failed files copied into subfolders under their respective folders, this
behavior can be disabled to copy the files directly into the folders provided without creating the subfolder.
Take note that with this behavior existing files with the same name will be overwritten.

The sample uses the file extension of the file chosen to determine what converters
PNDocConvQueueServiceLib will try and use when converting the files.

Document Conversion Service 3.0

181 Converting Files with Document Conversion Service

The Watch Folder Service

You can provide a single converter name or a semi-colon separated list of converter names to use. If you
pass a list of names the first matching converter name that has a running converter in Document
Conversion Service will be used. See What Files Can I Convert? for a list of converter names to use.

182

Document Conversion Service 3.0

Converting Files with Document Conversion Service

The Watch Folder Service

Starting and Stopping the Watch Folder Service

Before you begin...

If Document Conversion Service is not running, the Watch Folder Service sample can be started but
it will not process any files until Document Conversion Service is also running. Follow the steps in
Starting and Stopping the Service to start the Document Conversion Service.

Starting the Watch Folder Service

1. Start the Watch Folder Service by going to Start - All Programs - PEERNET Document
Conversion Service 3.0 - Watch Folder - Start Watch Folder Service.

2. A message box will appear when the service has been started or if it has failed to start.

Stopping the Watch Folder Service

1. Stop the Watch Folder Service by going to Start - All Programs - PEERNET Document
Conversion Service 3.0 - Watch Folder - Stop Watch Folder Service.

2. A message box will appear when the service has been stopped.

Starting the Watch Folder Service from the Services Panel

1. Open the Services panel by going to Start - Control Panel - System and Security -
Administrative Tools - Services (or type "Services" into the search field on the Start
menu to open the Services panel).

2. In the Service control panel applet locate the service PEERNET Watch Folder Service.

3. Select Start from the left hand side.

Stopping the Watch Folder Service from the Services Panel

1. Open the Services panel by Start - Control Panel - System and Security -
Administrative Tools - Services (or type "Services" into the search field on the Start
menu to open the Services panel).

2. In the Service control panel applet locate the service PEERNET Watch Folder Service.

3. Select Stop from the left hand side.

Document Conversion Service 3.0

183 Converting Files with Document Conversion Service

The Watch Folder Service

Configure the Watch Folder Service

The Watch Folder Service application configuration file (an XML file) contains the custom configuration
section <WatchFoldersSection>. This section contains the <WatchFolders> section at the top of the file and
a global <Settings> section at the bottom.

The <WatchFolders> section at the top contains, to start, 6 individual <WatchFolder> sections, one for each
sample conversion folder provided. You can modify these sample sections as needed to meet your
requirements, or you can add your own section.

Each <WatchFolder> section consists of a <Settings> collection of name-value pairs. These settings can
be grouped into two sections: the folder settings and the output file settings.

The <Settings> section at the bottom of the file contains the file extension to converter mapping that is
used by Watch Folder Service to determine what converter(s) to use for each file type. You can provide a
single converter name, or a semi-colon separated list of converter names for each unique file extension. If
you pass a list of names the first converter that is found and is running in Document Conversion Service
will be used.

Changing the Watch Folder Service Configuration

A copy of the Watch Folder Service sample is installed as a Windows service when Document
Conversion Service is installed. A shortcut to this service is provided directly from the Start menu.

To modify its configuration you need to change the service's application configuration file.

1. Open the configuration file in the DCS Editor by going to Start - All Programs - PEERNET
Document Conversion Service 3.0 - Watch Folder - Configure Watch Folder
Settings.

2. In the editor, scroll to find the <WatchFolder> section for the conversion folder that you need to
change, or use the Find and Replace tool. If you are creating a new section, copy and paste one
of the sample sections to start.

3. You will most likely need to change the paths specified for the InputFolder, Staging Folder,
Working Folder, FailedFolder, Completed Folder and OutputFolder settings.
Occasionally you may also need to configure the SearchFilter setting as well. See the folder
settings section for more details.

a. You can enable or disable a conversion folder by setting the Enabled setting to true or false.
When false, the folder is not monitored. The default is true if this setting is not provided.

b. The type of output file created is also controlled by the settings in this file. See the section on
output file settings and the sample watch folder settings provided in the configuration file.

c. The file extension mapping is controlled by by the <Settings> section. See Changing the File
Extension to Converter Mapping for details.

184

Document Conversion Service 3.0

Converting Files with Document Conversion Service

The Watch Folder Service

4. Save the edited file. The DCS Editor will validate the file when saving. Restart the service to apply
your changes.

Document Conversion Service 3.0

185 Converting Files with Document Conversion Service

The Watch Folder Service

The Folder Settings

The folder settings describe the following:

· if the folder is enabled or disabled

· the input folder that is being watched, what files to pick up out of that folder, how often to look for
new files in the folder, and whether or not to include any folders under the input folder in the
search

· the staging and working folders to use when converting files

· the output folder to store the converted files

· the failed folder to store files that fail to convert

· the completed folder, an optional folder to store the original files that were converted

· other options that define how many files are picked up at once and if batches are run
synchronously

· how files are stored in the completed and failed folders

Code Sample - Folder Settings

<WatchFolders>

 <!-- This watch folder creates 300 DPI Optimized TIFF Images -->
 <WatchFolder Name="ConvertToTIFF Watch Folder">
 <Settings>

 <!-- Folder Options -->
 <add Name="Enabled" Value="True"/>
 <add Name="InputFolder" Value="C:\PEERNET\WatchFolders\ConvertToTIFF\Input"/>
 <add Name="SearchFilter" Value="*.*"/>
 <add Name="IncludeSubFolders" Value="True"/>
 <add Name="DeleteInputSubFolders" Value="True"/>
 <add Name="StagingFolder" Value="C:\PEERNET\WatchFolders\ConvertToTIFF\Staging"/>
 <add Name="WorkingFolder" Value="C:\PEERNET\WatchFolders\ConvertToTIFF\Working"/>
 <add Name="FailedFolder" Value="C:\PEERNET\WatchFolders\ConvertToTIFF\Failed"/>
 <add Name="CompletedFolder" Value="C:\PEERNET\WatchFolders\ConvertToTIFF\Completed"/>
 <add Name="OutputFolder" Value="C:\PEERNET\WatchFolders\ConvertToTIFF\Output"/>
 <add Name="PollingInterval" Value="15000"/>
 <add Name="DCOMComputerName" Value="localhost"/>
 <add Name="TestMode" Value="false"/>
 <add Name="NormalizeFilenames" Value="false"/>
 <add Name="CopyInstructionsFromResources" Value="ReadMe_ConvertToTIFF"/>

 <!-- 0 means no limit -->
 <add Name="Polling.MaxFilesToProcessAtATime" Value="0"/>
 <add Name="Polling.SynchronousFilePickup" Value="false"/>

 <add Name="UseTimeDateSubFoldersInCompletedFolder" Value="true"/>
 <add Name="UseTimeDateSubFoldersInFailedFolder" Value="true"/>
 <add Name="UseCompressedDateTimeFormat" Value="false" />

 <!-- Preprocess Archive Settings -->
 <!-- Comment out this line or set this as empty string to disable MSG archive processing.-->
 <!-- <add Name="PreprocessArchiveFormatsFilter" Value="*.msg" /> -->

186

Document Conversion Service 3.0

Converting Files with Document Conversion Service

The Watch Folder Service

Code Sample - Folder Settings

 <add Name="PreprocessArchive.IncludeExtensionInFolderName" Value="true" />

 <!-- Preprocess MSG Archive Settings -->
 <add Name="PreprocessArchive.MSG.IncludeInlineAttachments" Value="true" />
 <!-- Pipe (|) separated list of file extensions (e.g *.doc|*.docx) to match. -->
 <!-- Pass empty string for match all.-->
 <add Name="PreprocessArchive.MSG.AttachmentsIncludeFilter" Value="" />
 <!-- Pipe (|) separated list of file extensions (e.g *.png|*.jpg) to exclude. -->
 <!-- Pass empty string to exclude none.-->
 <add Name="PreprocessArchive.MSG.AttachmentsExcludeFilter" Value="" />

 <!-- Clustered Processing -->
 <!-- This forces batch mode processing with synchronous wait and -->
 <!-- no date time stamp used in the Failed\Completed folders -->
 <add Name="ClusteredProcessing.Enabled" Value="false" />
 <!-- Override this for clustering to customize pickup -->
 <!-- <add Name="ClusteredProcessing.MaxFilesToPickup" Value="6"/> -->

 <!-- Run Command at End On Success -->
 <!-- Any command entered here will run on successful conversion, on each file created.-->
 <!-- Use " to put the command in quotes if there are spaces, and to enclose parameters.-->
 <!-- $(OutputFilePath) is the full path to the created file.-->
 <!-- $(SourceFileName) can also be passed as a parameter to allow correlating the source and output.-->
 <add Name="RunAtEnd.Success.Enabled" Value="false" />
 <add Name="RunAtEnd.Success.Command" Value="" />
 <add Name="RunAtEnd.Success.Parameters" Value=""$(OutputFilePath)"" />
 <add Name="RunAtEnd.Success.StartDirectory" Value="" />
 <!-- One of Normal, Min, Max, Hidden (default) -->
 <add Name="RunAtEnd.Success.WindowState" Value="Hidden" />
 <!-- Wait mode for the command, one of WaitForCompletion, WaitWithExitCode, DoNotWait (default)-->
 <add Name="RunAtEnd.Success.WaitMode" Value="DoNotWait" />
 <!-- Default is 3 minutes -->
 <add Name="RunAtEnd.Success.WaitModeMaxTime" Value="180000" />

 <!-- Run Command at End On Failure -->
 <!-- Any command entered here will run on a failed conversion, on the original source file.-->
 <!-- Use " to put the command in quotes if there are spaces, and to enclose parameters.-->
 <!-- $(FailedFilePath) is the path to the file in its failed location.-->
 <!-- $(SourceFileName) can also be passed as a parameter to allow correlating the source and output.-->
 <add Name="RunAtEnd.Fail.Enabled" Value="falsetrue" />
 <add Name="RunAtEnd.Fail.Command" Value="" />
 <add Name="RunAtEnd.Fail.Parameters" Value=""$(FailedFilePath)"" />
 <add Name="RunAtEnd.Fail.StartDirectory" Value="" />
 <!-- One of Normal, Min, Max, Hidden (default)-->
 <add Name="RunAtEnd.Fail.WindowState" Value="Hidden" />
 <!-- Wait mode for the command, one of WaitForCompletion, WaitWithExitCode, DoNotWait (default)-->
 <add Name="RunAtEnd.Fail.WaitMode" Value="DoNotWait" />
 <add Name="RunAtEnd.V.WaitModeMaxTime" Value="180000" />

 ...
 </Settings>
 </WatchFolder>

</WatchFolders>

The Enabled setting is used to determine if this folder is to be watched. When set to False, this folder
is not monitored. If this setting is not provided it defaults to True.

The InputFolder is polled on a customizable time interval looking for files or folders of files to convert.
Files are chosen based on the SearchFilter setting. The default setting of "*.*" means all files will be
picked up to be processed. You can specify what files to convert by changing this setting. Different file
types are separated by the pipe (|) symbol. For example. to only pick up Word and PDF files from the
folder, the SearchFilter can be set to "*.doc|*.docx|*.pdf".

Document Conversion Service 3.0

187 Converting Files with Document Conversion Service

The Watch Folder Service

If any files are dropped into the input folder that meet the criteria of what files you want to convert,
these files, or the number of files allowed as explained below, are moved into a uniquely named folder
(based on date and time) under the StagingFolder.

When a folder is dropped into the InputFolder, it is searched for files that match the criteria. If any
matching files are found in the folder, the folder's structure is mirrored under a new folder in the
StagingFolder and the files copied for conversion. During all subsequent steps of copying to the
OutputFolder, FailedFolder or CompletedFolder the folder's structure is kept intact.

You can set a limit on how many files are picked up at a single time using the
Polling.MaxFilesToProcessAtATime option. This is useful to when dealing with folders with a very
large number of files as it allows you to automatically process the files in smaller groups. If you do
need to process a large number of files in smaller batches, Polling.SynchronousFilePickup should
also be set to true to allow the first group of files to finish converting before the next group of files is
picked up. See Large Volume Batch Conversion with Watch Folder Service for a sample
configuration.

Once under the StagingFolder, the files are passed to Document Conversion Service to be converted
using the output format settings provided for that watch folder. Putting files into this temporary folder
prevents file name collisions if another file of the same name is dropped into the folder by another
user.

Converted files are first created in the WorkingFolder while they are being created. Once complete,
they are copied into the OutputFolder.

If any file should fail to convert, a folder named using the same date and time stamped name as was
created under the staging folder, is also created under the FailedFolder and the failed file is copied
there.

If the CompletedFolder is set, files that were successfully converted are placed into a new
subfolder under that folder. This subfolder is named using the date and time the files were picked up
from the InputFolder. Each time a new set of files is found to convert, a new subfolder will be
created.

If you do not want your completed and failed files copied into subfolders under the CompletedFolder
and FailedFolder, this behavior can be changed to copy the files directly into the folders provided
without creating the date and time stamped subfolder.

You disable this by setting the UseTimeDateSubFoldersInCompletedFolder option to false. When
disabled, the files are copied directly into the CompletedFolder. If a file of the same name already
exist in the folder it will be overwritten.

188

Document Conversion Service 3.0

Converting Files with Document Conversion Service

The Watch Folder Service

If you do not want to keep a copy of the original source files, you can set the CompletedFolder to an
empty string, but take note that this will delete any files that have been dropped into the InputFolder.

Any file that fails to convert is moved into a new subfolder under the FailedFolder. Like the
CompletedFolder, the subfolder is named using the date and time the files were picked up from the
InputFolder. This can be disabled by setting the UseTimeDateSubFoldersInFailedFolder option to
false. When disabled, the files are copied directly into the FailedFolder, and any file of the same
name that already exists in the folder it will be overwritten.

Preprocessing Outlook Message Attachments (DCS 3.0.009)

Attachments to Outlook Message files (*.msg) can be automatically extracted and converted along
with the original message file. This setting is off by default. To enable it, remove the comment markers
on the PreprocessArchiveFormatsFilter setting. See Processing Outlook Message Attachments for
full details.

Clustered Processing (DCS 3.0.010)

Clustered processing is available using the ClusteredProcessing.Enabled setting. Clustered
processing allows you to point more than one computer running Document Conversion Service and
Watch Folder Service at the same folder of files and have both computers convert files from that
location. See High Performance Clustering and Fail Over Conversion for more information.

Post Conversion Processing (DCS 3.0.010)

Each watch folder can optionally run a command at the end of the conversion process. Commands
are run on each created file for successful conversions, and on the original source file in the case of a
failed conversion. See Post-Conversion Processing for more information.

Unique Output Filenames and Flat Folder Structures(DCS 3.0.019)

Each watch folder can provide a unique file name for each output file created, as well as the ability to
flattening the input folder structure when creating the files in the output folder. See Unique File Naming
and Flat Folder Structures for more information.

All Watch Folder Service Settings

Key Value

ClusteredProcessing.Enabled Set this to true to allow clustered
processing on this Watch Folder. When
this is true, other computers with Document
Conversion Service and Watch Folder
Service installed can be directed to convert
from the same folder of files.

ClusteredProcessing.MaxFilesToPickup When clustered processing is enabled,
only a subset of the files in the InputFolder
are picked up each time the folder is
checked. This allows the other computers
in the cluster to also pick up files to
process. The number of files picked up
defaults to the
NumberOfDocumentsInParallel settings in

Document Conversion Service 3.0

189 Converting Files with Document Conversion Service

The Watch Folder Service

Key Value

the General settings section of the
application configuration file, and can be
overridden here.

CompletedFolder This is optional. If included in the settings
the source files and folders that are
dropped into the InputFolder location are
copied into this folder when the conversion
is complete. If this setting is set to an
empty string ("") or is not included is the
settings the source files are deleted.

CopyInstructionsFromResources PEERNET internal setting used to copy
embedded text file containing instructions
to the sample folders.

DCOMComputerName When converting using a remote computer
and DCOM, this setting is the name of the
DCOM server where Document
Conversion Service is running. See Setting
up Client-Server Conversion for more
information.

DeleteInputSubFolders When this is true, any folders dropped into
the InputFolder for processing will be
deleted when all of the files in the folder
and its subfolders are converted. When set
to false, all of the files in the folder will be
converted but the folder structure will
remain in the InputFolder.

This setting is often used in conjunction
with IncludeSubfolders.

When
Polling.MaxFilesToProcessAtATime is
configured to limit the number of files
picked up, this option is automatically set to
false.

Enabled When this is true, the folder will be
monitored. When set to false, this folder is
not monitored. If this setting is not found, it
defaults to true.

FailedFolder If any file fails to convert, they are copied
into a folder under this location. The folder
name matches the name of the sub-folder
created under the StagingFolder during
processing.

IncludeSubfolders If this value is true then any folders
dropped into the InputFolder location will
also be searched for files.

InputFolder This is the folder that is watched for files
(and folders if IncludeSubfolders is true)

190

Document Conversion Service 3.0

Converting Files with Document Conversion Service

The Watch Folder Service

Key Value

to convert.

NormalizeFilenames When true, file names passed in will be
checked for normalization and normalized
when necessary. This means that the new
output file name, if not specified, will be the
normalized file name, which while it may
look identical to the original name, is
actually not the same.

This should be left as false unless you
have problems converting files with foreign
file name where some international
characters are represented using diacritics.
A diacritic is a glyph added to a letter; they
are used to change the sound of the letter
to which they are added. Some examples
of a diacritic are the accent grave (‘) and
acute (’) in the French language.

OutputFolder The converted files are copied into this
folder from the WorkingFolder when the
conversion is done. This is done to prevent
accidental pickup of partially created files.

PollingInterval Specifies the maximum wait period that
can elapse between checking the input
folder for files. This interval is in
milliseconds, 15000 would poll the folder
every 15 seconds.

Each time a collection of files has
completed conversion, the folder is
immediately checked for files to convert to
maintain throughput. If the folder is empty,
the full polling interval will elapse before
checking again.

Polling.MaxFilesToProcessAtATime Allows the setting of a limit on the number
of files that will be picked up from the
InputFolder during any polling interval.
When set to 0, no limit is imposed.

This option is useful when the InputFolder
is targeting an existing folder with a very
large number of files. It allows the files to
be processed in batches or groups instead
of copying the entire folder structure to the
WorkingFolder. This reduces the required
amount of disk space used when
processing files.

When the number of files picked up is
limited, the option DeleteInputSubFolders
is automatically set to false.

Document Conversion Service 3.0

191 Converting Files with Document Conversion Service

The Watch Folder Service

Key Value

Polling.SynchronousFilePickup When set to true, the Watch folder will not
pick up any files from the InputFolder until
the current batch, or group, of files has
completed processing.

Used in conjunction with
Polling.MaxFilesToProcessAtATime to
control the flow of files so that a very large
group of files can be processed as many
smaller batches without overloading the
physical disk space of the computer.

Polling.NetworkShareRefreshInterval Each time a collection of files has
completed conversion, the folder is
immediately checked for files to convert to
maintain throughput. This default behavior
may not give slower network shares
enough time to refresh and propagate file
and directory changes.

Use this value to set a wait period interval
in milliseconds. This interval applies only
when the InputFolder is a network share,
not a local drive. It defaults to 0ms (no
waiting) unless set.

OutputFolder.MaintainInputFolderStructure When set to false, this flattens any input
folder structures, storing all outputs in a
single output folder. This may cause file
overwrites due to file name collisions; use
OutputFolder.PrependUniqueGUIDToFil
ename or to
OutputFolder.AppendUniqueGUIDToFile
name prevent this.

This settings also overrides the creation of
the MSG extraction subdirectory
processing MSG files using the
PreprocessArchiveFormatsFilter setting.

Default is true, to maintain the directory
structure.

OutputFolder.PrependUniqueGUIDToFilename When set to true, a Globally Unique ID, or
GUID, is added at the beginning of the file
name and an optional separator string,
OutputFolder.UniqueGUIDSeparatorCha
racter, can be placed between the GUID
and the filename. This setting can be used
instead of or in addition to
OutputFolder.AppendUniqueGUIDToFile
name.

192

Document Conversion Service 3.0

Converting Files with Document Conversion Service

The Watch Folder Service

Key Value

4c4636f7-e9c5-4c4c-97af-
081a328ba7c5_ Filename.tif

There is also an option,
OutputFolder.RemoveHyphensFromGUI
D, to remove the dashes from the GUID.

This settings defaults to false.

OutputFolder.AppendUniqueGUIDToFilename When set to true, a Globally Unique ID, or
GUID, is added at the end of the file name
before the extension and an optional
separator string,
OutputFolder.UniqueGUIDSeparatorChara
cter, can be placed between the filename
and the GUID. This settings can be used
instead or or in addition to
OutputFolder.PrependUniqueGUIDToFil
ename.

Filename_4c4636f7-e9c5-4c4c-97af-
081a328ba7c5.tif

There is also an option,
OutputFolder.RemoveHyphensFromGUI
D, to remove the dashes from the GUID.

This settings defaults to false.

OutputFolder.RemoveHyphensFromGUID This setting defaults to false, meaning the
hyphens, or dashes are included in the
GUID in the file name. Set this to true to
remove them.

OutputFolder.UniqueGUIDSeparatorCharacter This sets the string that defines the
separator character, or characters that will
be placed between the GUID and the file
name. It defaults to an underscore (-)
character. Any invalid filename characters
in this string will cause it to default back to
a single underscore.

To not have a separator between the GUID
and the filename, leave this string empty,
or comment it out.

PreprocessArchiveFormatsFilter This setting filters, by file extension, what
archive formats will be preprocessed
before converting. Currently the only valid
extension is "*.msg" for Outlook Message
archive files. This setting can be disabled
by commenting it out, or passing an empty
string.

Document Conversion Service 3.0

193 Converting Files with Document Conversion Service

The Watch Folder Service

Key Value

PreprocessArchive.IncludeExtensionInFolderName Control whether or not the .msg file
extension is included in the name used to
created the subfolder that will hold the
message and attachments for processing.
This is set to True by default and it is
recommended to leave it set to prevent
output file naming collisions.

PreprocessArchive.MSG.IncludeInlineAttachments Message attachments can be inline
(pasted into the email body) or attached as
separate files. Images used in signatures
are often inline attachments. Set this to
false to not include inline attachments; note
that this will also cause inline attached
documents to not be procesed. Default is
true. This setting is applied before the
attachment filtering below.

PreprocessArchive.MSG.AttachmentsIncludeFilter Allows you filter what attachments will be
processed. When set to an empty string, all
attachments are processed. To filter for
specific file types, enter in the extensions
for each type separated by the pipe (|)
character, such as "*.doc|*.docx|*.pdf".

PreprocessArchive.MSG.AttachmentsExcludeFilter Allows you filter what attachments will not
be processed. This option is applied after
checking the include filter above. When set
to an empty string, all attachments are
processed. To filter for specific file types,
enter in the extensions for each type
separated by the pipe (|) character, such as
"*.doc|*.docx|*.pdf".

RunAtEnd.Fail.Enabled Set this to true to run the specified
command on the original file if the
conversion fails. Default is false.

RunAtEnd.Fail.Command The full path to the command to be
executed without arguments. Default is an
empty string, no command to run.

RunAtEnd.Fail.Parameters The parameters for the command. Use the
HTML code to put the command in quotes
if there are spaces, and to enclose
parameters. The following variables are
available to pass arguments to the
command.

$(FailedFilePath) - this is the path to the
original file in its failed location.
$(SourceFileName) - this is the file name
of the original file.

RunAtEnd.Fail.StartDirectory The directory in which to run the command.
Default is an empty string.

194

Document Conversion Service 3.0

Converting Files with Document Conversion Service

The Watch Folder Service

Key Value

RunAtEnd.Fail.WindowState The state of the command window when it
is run.

Normal - display the window in its normal
state.
Min - display the window minimized to the
taskbar
Max - display the window maximized.
Hidden - do not show the window.
(Default)

RunAtEnd.Fail.WaitMode Optionally wait for the command to
complete before continuing. The default is
to not wait.

If WaitForCompletion or
WaitWithExitCode is chosen, the
RunAtEnd.Fail.WaitModeMaxTime value
is always used to stop the command if it
has not returned after the set amount of
time.

WaitForCompletion - wait for the
command to complete before continuing.
WaitWithExitCode - waits for the
command to complete and emits the exit
code in the log.
DoNotWait - does not wait for the
command to complete. (Default)

RunAtEnd.Fail.WaitModeMaxTime The maximum amount of time to wait for
the command being run to complete.
Default is 3 minutes.

RunAtEnd.Success.Enabled Set this to true to run the specified
command on each of the created files if the
conversion succeeds. Default is false.

RunAtEnd.Success.Command The full path to the command to be
executed without arguments. Default is an
empty string, no command to run.

RunAtEnd.Success.Parameters The parameters for the command. Use the
HTML code to put the command in quotes
if there are spaces, and to enclose
parameters. The following variables are
available to pass arguments to the
command.

$(OutputFilePath) - this is the path to the
converted file.
$(SourceFileName) - this is the file name
of the original file.

RunAtEnd.Success.StartDirectory The directory in which to run the command.
Default is an empty string.

Document Conversion Service 3.0

195 Converting Files with Document Conversion Service

The Watch Folder Service

Key Value

RunAtEnd.Success.WindowState The state of the command window when it
is run.

Normal - display the window in its normal
state.
Min - display the window minimized to the
taskbar
Max - display the window maximized.
Hidden - do not show the window.
(Default)

RunAtEnd.Success.WaitMode Optionally wait for the command to
complete before continuing. The default is
to not wait.

If WaitForCompletion or
WaitWithExitCode is chosen, the
RunAtEnd.Success.WaitModeMaxTime
value is always used to stop the command
if it has not returned after the set amount of
time.

WaitForCompletion - wait for the
command to complete before continuing.
WaitWithExitCode - waits for the
command to complete and emits the exit
code in the log.
DoNotWait - does not wait for the
command to complete. (Default)

RunAtEnd.Success.WaitModeMaxTime The maximum amount of time to wait for
the command being run to complete.
Default is 3 minutes.

SearchFilter A file extension based filter for file
matching. By default it is set to *.* to match
all files. A filter of *.pdf would only search
for PDF documents.

StagingFolder This folder is a holding location for the files
during conversion. When the input folder is
polled, each group of files is copied into a
uniquely named sub-folder (based on date
and time) under this folder. If
IncludeSubfolders is true folders are also
copied.

TestMode This flag should be false or removed
completely on a production system.
Used for development purposes, this flag
can be used to simulate load testing by
copying the converted files back into the
input folder. This value is ignored when
clustered processing is enabled.

196

Document Conversion Service 3.0

Converting Files with Document Conversion Service

The Watch Folder Service

Key Value

UseTimeDateSubFoldersInCompletedFolder When set to true, each set of completed
files are stored in a subfolder under the
CompletedFolder. This subfolder is
named using the date and time the files
were picked up from the InputFolder.

When set to false the files are copied
directly into the CompletedFolder. If a file
of the same name already exist in the
folder it will be overwritten.

This option is not used when the
CompletedFolder is set to an empty string
("") or is not included is the settings.

UseTimeDateSubFoldersInFailedFolder When set to true, any files that fail to
convert are stored in a subfolder under the
FailedFolder. This subfolder is named
using the date and time the files were
picked up from the InputFolder.

When set to false the files are copied
directly into the FailedFolder. If a file of the
same name already exist in the folder it will
be overwritten.

WorkingFolder The output files are first created in this
folder before being copied to the
OutputFolder. If the files were created
directly in the OutputFolder and another
program was monitoring that folder the files
could be picked up before the file was
created. This two-stage process eliminates
that problem.

Document Conversion Service 3.0

197 Converting Files with Document Conversion Service

The Watch Folder Service

The Output File Settings

The <WatchFolder> section is also responsible for the type of output that is created. Common settings
that would appear here would be:

· what type of file to create (multipaged or serialized TIFF, PDF files, JPEG images)

· the resolution (DPI) of any images created

· create color or black and white files

· create fax mode TIFF images.

The settings are provided as a set of name-value pairs based on the settings outlined in Conversion
Settings. In this sample application the conversion setting strings are stored in the configuration file for
the application. These settings are read from the configuration file and then passed to the
PNDocConvQueueServiceLib object through its COM interface. Having the conversion settings
external to the program allows the settings to be changed without having to recompile.

The <WatchFolder> sample below creates multipaged, color-optimized TIFF files at 300 DPI with
Group4 compression. See the sample WatchFolder sections provided in the configuration file for more
examples of configurations of common output formats.

198

Document Conversion Service 3.0

Converting Files with Document Conversion Service

The Watch Folder Service

Code Sample - Output File Settings

<WatchFolders>

 <!-- This watch folder creates 300 DPI Optimized TIFF Images -->
 <WatchFolder Name="ConvertToTIFF Watch Folder">

 <Settings>

 <!-- Output file options -->
 <add Name="Devmode settings;Resolution" Value="300"/>

 <add Name="Save;Output File Format" Value="TIFF Multipaged"/>
 <!-- Replace the above with this to create serialized images. -->
 <!-- <add Name="Save;Output File Format" Value="TIFF Serialized"/> -->

 <add Name="Save;Append" Value="0"/>
 <add Name="Save;Color reduction" Value="Optimal"/>
 <add Name="Save;Dithering method" Value="Halftone"/>

 <!-- This creates file.ext.tif, change to 1 to create file.tif-->
 <add Name="Save;Remove filename extension" Value="0" />

 <add Name="TIFF File Format;BW compression" Value="Group4"/>
 <add Name="TIFF File Format;Color compression" Value="LZW RGB"/>
 <add Name="TIFF File Format;Indexed compression" Value="LZW"/>
 <add Name="TIFF File Format;Greyscale compression" Value="LZW"/>
 <add Name="JPEG File Format;Color compression" Value="Medium Quality"/>
 <add Name="JPEG File Format;Greyscale compression" Value="High
Quality"/>

 </Settings>
 </WatchFolder>

</WatchFolders>

Document Conversion Service 3.0

199 Converting Files with Document Conversion Service

The Watch Folder Service

Changing the File Extension to Converter Mapping

The file extension of each file is used to determine what converter is used to convert that file. File
extensions can be added, removed and changed as needed. When the converter requires a native
application to be installed to do the conversion, that application must also be installed.

The mapping consists of the extension (the suffix of the file name past the last dot or period in file's
name) and a semi-colon separated list of converter names. See What Files Can I Convert? for a list of
converter names.

In some cases the file extension may only have one converter that can process that type of file, and in
others, such as PDF which can be converted using either Adobe Reader, Ghostscript or Outside-In
AX, you may specify more than one. The code sample below shows a small snippet of the file
mapping in the configuration file.

If you want to by-pass certain file types, say for instance you are creating TIFF images and you want
to skip converting any TIFF images that are dropped into the input folder, you can change the file
extension mapping to have files with the .tif extension sent to the PEERNET Passthrough converter.
See Skipping Files with the Passthrough Converter for more details.

The default configuration file lists all of the file extensions to converter mappings in the Settings
section at the bottom of the files. These mappings can also be placed inside any WatchFolder section
to customize the file extension mappings per folder. An example why you would need this would be
two WatchFolder sections for PDF to TIFF conversion where one uses the default of Adobe Reader,
and another one that uses Ghostscript to convert the PDF to TIFF instead.

200

Document Conversion Service 3.0

Converting Files with Document Conversion Service

The Watch Folder Service

Code Sample - File Extension to Converter Mapping

<WatchFoldersSection>

 <WatchFolders>
 ...
 <WatchFolder Name="PDF to TIFF with Adobe">
 <Settings>
 <!-- Folder options -->
 <add Name="InputFolder" Value="C:\PEERNET\PDF_Adobe\Input"/>
 ...
 </Settings>
 </WatchFolder>

 <WatchFolder Name="PDF to TIFF with Ghostscript">
 <Settings>
 <!-- Folder options -->
 <add Name="InputFolder" Value="C:\PEERNET\PDF_Ghostscript\Input"/>
 ...
 <add Name=".pdf" Value="Ghostscript;Adobe Acrobat Reader;;Outside-In AX" />
 </Settings>
 </WatchFolder>

 </WatchFolders>

 <Settings>
 <!-- File Extension to Converter Mapping -->
 <!-- These can be added to the Settings section for each WatchFolder -->
 <!-- to tailor each WatchFolder to use different converters for its -->
 <!-- documents. The individual settings take precedence over the -->
 <!-- global WatchFolderSection settings section -->
 <add Name=".doc" Value="Microsoft Word;Outside-In AX" />
 <add Name=".docx" Value="Microsoft Word;Outside-In AX" />

 <add Name=".xlsx" Value="Microsoft Excel;Outside-In AX" />
 <add Name=".xls" Value="Microsoft Excel;Outside-In AX" />

 <add Name=".pptx" Value="Microsoft PowerPoint;Outside-In AX" />
 <add Name=".ppt" Value="Microsoft PowerPoint;Outside-In AX" />

 <add Name=".pdf" Value="Adobe Acrobat Reader;Ghostscript;Outside-In AX" />

 ...
 <add Name=".tif" Value="PEERNET Image Converter;Outside-In AX" />
 <add Name=".tiff" Value="PEERNET Image Converter;Outside-In AX" />
 <add Name=".bmp" Value="PEERNET Image Converter;Outside-In AX" />
 <add Name=".jpg" Value="PEERNET Image Converter;Outside-In AX" />
 <add Name=".jpeg" Value="PEERNET Image Converter;Outside-In AX" />
 </Settings>

</WatchFoldersSection>

Document Conversion Service 3.0

201 Converting Files with Document Conversion Service

The Watch Folder Service

Long Path Name Support

Historically, Windows (and before that, DOS) had a maximum path length (MAXPATH) of 260 characters.
While this has changed over the years to allow file paths of up to 32,000 characters, many of the
underlying components of Windows are still bound by the MAXPATH limitation.

Most of the time you never have to think about long path support but it does occasionally occur. A
common situation would be having to convert all the files in a directory structure on network attached
storage (NAS) created in UNIX or another file system where long paths are supported.

To handle this, Document Conversion Service and the Watch Folder Service support long path names for
the input, output, failed and completed folders of a watch folder, as well as saving the results XML files
and logging files.

The one caveat is that the files and directory structures copied to the staging and working folders to be
processed need to be less than 255 characters. We can do this by keeping these paths as short as
possible. This staging and working folder limitation is a requirement of the underlying programs, such as
Adobe Reader and Microsoft Office, that Document Conversion Service uses to perform conversions. If
the file path sent to Document Conversion Service to be converted is longer than MAXPATH that file will
gracefully fail to convert.

Keep in mind that even if the input folder path itself is not greater than MAXPATH, the underlying
subfolders and file names can create a path that is. You can see by this sample directory shown below
that using C:\ALongPathTestFolder as the input folder path will generate file paths longer than MAXPATH.

In this scenario, you can also set UseCompressedDateTimeFormat option to true to use a shorter
version of the date-time stamp named subfolder in the working, staging, completed and failed folders. The
default creates an easier to read folder name similar to Thursday_March_31_2016_10_16_32_AM, while
the condensed date-time stamp is strictly numerical and similar to 20160331131645.

A sample WatchFolder configuration is shown below.

202

Document Conversion Service 3.0

Converting Files with Document Conversion Service

The Watch Folder Service

Code Sample

<!-- This watch folder creates 300 DPI Optimized TIFF Images -->
<WatchFolder Name="ConvertToTIFF Watch Folder">
 <Settings>
 <!-- Folder options -->
 <add Name="Enabled" Value="true" />
 <add Name="InputFolder" Value="C:\ALongPathToTestFolder\"/>
 <add Name="SearchFilter" Value="*.*"/>
 <add Name="IncludeSubFolders" Value="True"/>
 <add Name="DeleteInputSubFolders" Value="True"/>
 <add Name="StagingFolder" Value="C:\PN\S"/>
 <add Name="WorkingFolder" Value="C:\PN\W"/>
 <add Name="FailedFolder" Value="C:\ALongPathToTestFolderResults\Failed"/>
 <add Name="CompletedFolder" Value="C:\ALongPathToTestFolderResults\Completed"/>
 <add Name="OutputFolder" Value="C:\ALongPathToTestFolderResults\Output"/>
 <add Name="PollingInterval" Value="15000"/>
 <add Name="DCOMComputerName" Value="localhost"/>
 <add Name="TestMode" Value="false"/>
 <add Name="NormalizeFilenames" Value="false"/>
 <add Name="CopyInstructionsFromResources" Value="ReadMe_ConvertToTIFF"/>

 <!-- 0 means no limit -->
 <add Name="Polling.MaxFilesToProcessAtATime" Value="0" />
 <add Name="Polling.SynchronousFilePickup" Value="false" />

 <add Name="UseTimeDateSubFoldersInCompletedFolder" Value="true" />
 <add Name="UseTimeDateSubFoldersInFailedFolder" Value="true" />
 <add Name="UseCompressedDateTimeFormat" Value="true" />

 <!-- Output file options -->
 <add Name="Devmode settings;Resolution" Value="300"/>

 <add Name="Save;Output File Format" Value="TIFF Multipaged"/>
 <!-- Replace the above with this to create serialized images. -->
 <!-- <add Name="Save;Output File Format" Value="TIFF Serialized"/> -->

 <add Name="Save;Append" Value="0"/>
 <add Name="Save;Color reduction" Value="Optimal"/>
 <add Name="Save;Dithering method" Value="Halftone"/>

 <!-- This creates file.ext.tif, change to 1 to create file.tif-->
 <add Name="Save;Remove filename extension" Value="0" />

 <add Name="TIFF File Format;BW compression" Value="Group4"/>
 <add Name="TIFF File Format;Color compression" Value="LZW RGB"/>
 <add Name="TIFF File Format;Indexed compression" Value="LZW"/>
 <add Name="TIFF File Format;Greyscale compression" Value="LZW"/>
 <add Name="JPEG File Format;Color compression" Value="Medium Quality"/>
 <add Name="JPEG File Format;Greyscale compression" Value="High Quality"/>
 </Settings>
</WatchFolder>

Document Conversion Service 3.0

203 Converting Files with Document Conversion Service

High Performance Clustering and Fail Over Conversion

High Performance Clustering and Fail Over Conversion

New for Document Conversion Service 3.0.010 is high-performance clustering and failover management
within the Watch Folder Service.

What is Clustering?

Clustering allows you to install Document Conversion Service on more than one computer, point each
computer at the same group of files, and have all the computers working together to convert the files in
that folder. This can greatly increase your conversion performance. If you are dealing with large sets of
files to be converted, clustering is an easy way to increase your conversion speed and keep your data
centralized.

You will need a separate license of Document Conversion Service for each computer you plan to use in
the cluster.

High Availability and Failover Support

A side benefit of clustering is failover, or high availability support. As more than one computer is actively
converting documents, if one computer has to be restarted or brought off line while other maintenance is
performed, the other computers watching the clustered folder are still running and converting until the first
one is back up and running again.

Clustering with Watch Folder Service

The Watch Folder Service includes a sample Watch Folder section, Clustered ConvertToTIFF Watch
Folder, that is pre-configured for clustered processing. This watch folder section uses a network share
folder, C:\PEERNET\WatchFolders\CLUSTERED, that is created as part of the Document Conversion
Service install. See Clustering - Use the PEERNET CLUSTERED Share Folder for steps on setting up
this type of clustered processing.

A more common approach is to have Document Conversion Service and Watch Folder Service installed
on several computers and watching a network share that is separate from any of the computers in the
cluster. See Clustering - Using an External Network Share for instructions on setting up clustering in this
environment.

Clustering - Use the PEERNET CLUSTERED Share Folder

In this scenario, the shared folder that contains the files and/or folders to be processed is on the first
computer in the cluster. All of the other computers simply point to the shared folder and process the files
from there. The key here is to install Document Conversion Service and create the DCSAdmin account
with the same user name and password on all computers in the cluster.

Setting up the First Node in the Cluster

1. Install Document Conversion Service and when prompted, allow the install to create the local
DCSAdmin administrative account. Keep note of the password used when creating the DCSAdmin
as you will need to use the same password on all the other computers.

2. The install will create a network shared folder, C:\PEERNET\WatchFolders\CLUSTERED.

204

Document Conversion Service 3.0

Converting Files with Document Conversion Service

High Performance Clustering and Fail Over Conversion

3. The Watch Folder Service contains a sample Watch Folder configuration using this folder for
clustered processing. Leave this configuration as set. The input location, C:
\PEERNET\WatchFolders\CLUSTERED\ConvertToTIFF\Input, is where you will copy the files to
be processed.

Document Conversion Service 3.0

205 Converting Files with Document Conversion Service

High Performance Clustering and Fail Over Conversion

Code Sample - Clustered Conversion for Base Node

<WatchFolders>
 <!-- This watch folder is configured for clustered processing -->
 <!-- it creates 300 DPI Optimized TIFF Images -->
 <WatchFolder Name="Clustered ConvertToTIFF Watch Folder">
 <Settings>

 <!-- The InputFolder, FailedFolder, CompletedFolder and OutputFolder can point to shared folders -->
 <add Name="InputFolder"
 Value="C:\PEERNET\WatchFolders\CLUSTERED\ConvertToTIFF\Input"/>
 <add Name="SearchFilter" Value="*.*"/>
 <add Name="IncludeSubFolders" Value="True"/>
 <add Name="DeleteInputSubFolders" Value="True"/>
 <add Name="FailedFolder"
 Value="C:\PEERNET\WatchFolders\CLUSTERED\ConvertToTIFF\Failed"/>
 <add Name="CompletedFolder"
 Value="C:\PEERNET\WatchFolders\CLUSTERED\ConvertToTIFF\Completed"/>
 <add Name="OutputFolder"
 Value="C:\PEERNET\WatchFolders\CLUSTERED\ConvertToTIFF\Output"/>

 <!-- Keep thse folders on separate computers for clustering. -->
 <add Name="StagingFolder"
 Value="C:\PEERNET\WatchFolders\CLUSTERED\ConvertToTIFF\Staging"/>
 <add Name="WorkingFolder"
 Value="C:\PEERNET\WatchFolders\CLUSTERED\ConvertToTIFF\Failed"/>

 ...

 <!-- Clustered Processing -->
 <!-- This forces batch mode processing with synchronous wait and -->
 <!-- no date time stamp used in the Failed\Completed folders -->
 <add Name="ClusteredProcessing.Enabled" Value="true"/>
 <!-- Override this for clustering to customize pickup -->
 <!-- <add Name="ClusteredProcessing.MaxFilesToPickup" Value="4"/> -->
 ...

 </Settings>
 </WatchFolder>
</WatchFolders>

4. Start Document Conversion Service and Watch Folder Service on this computer.

Setting up the Other Nodes

For all the other computers you want in the cluster, do the following.

1. Install Document Conversion Service and when prompted, allow the install to create the local
DCSAdmin administrative account. Use the same password used when the first node in the
cluster above. It is this matching account, as well as the shared network drive that allows the
clustered processing to take place. If the passwords do not match, clustering will not work.

2. The install will also create a network shared folder, C:\PEERNET\WatchFolders\CLUSTERED on
this computer but on this node, the shared folder is only used to keep the staging and working
folders for each node separate.

3. Open the watch folder configuration file in DCS Editor by going to Start - All Programs -
PEERNET Document Conversion Service 3.0 - Watch Folder - Configure Watch
Folder Settings.

206

Document Conversion Service 3.0

Converting Files with Document Conversion Service

High Performance Clustering and Fail Over Conversion

4. Scroll to the Clustered ConvertToTIFF Watch Folder section, or use the Find and Replace tool to
find the section in the file. Set the InputFolder setting to use the shared computer path to the first
node in the cluster instead of the hard drive on this computer.

Code Sample - Clustered Conversion

<WatchFolders>
 <!-- This watch folder is configured for clustered processing -->
 <!-- it creates 300 DPI Optimized TIFF Images -->
 <WatchFolder Name="Clustered ConvertToTIFF Watch Folder">
 <Settings>

 <!-- The InputFolder, FailedFolder, CompletedFolder and OutputFolder can point to shared folders -->
 <add Name="InputFolder"Value="\\ComputerA\CLUSTERED\ConvertToTIFF\Input"/>
 <add Name="SearchFilter" Value="*.*"/>
 <add Name="IncludeSubFolders" Value="True"/>
 <add Name="DeleteInputSubFolders" Value="True"/>
 <add Name="FailedFolder" Value="\\ComputerA\CLUSTERED\ConvertToTIFF\Failed"/>
 <add Name="CompletedFolder" Value="\\ComputerA\CLUSTERED\ConvertToTIFF\Completed"/>
 <add Name="OutputFolder" Value="\\ComputerA\CLUSTERED\ConvertToTIFF\Output"/>

 <!-- Keep thse folders on separate computers for clustering. -->
 <add Name="StagingFolder"
 Value="C:\PEERNET\WatchFolders\CLUSTERED\ConvertToTIFF\Staging"/>
 <add Name="WorkingFolder"
 Value="C:\PEERNET\WatchFolders\CLUSTERED\ConvertToTIFF\Failed"/>

 ...

 <!-- Clustered Processing -->
 <!-- This forces batch mode processing with synchronous wait and -->
 <!-- no date time stamp used in the Failed\Completed folders -->
 <add Name="ClusteredProcessing.Enabled" Value="true"/>
 <!-- Override this for clustering to customize pickup -->
 <!-- <add Name="ClusteredProcessing.MaxFilesToPickup" Value="4"/> -->
 ...

 </Settings>
 </WatchFolder>
</WatchFolders>

5. If desired, you can use the setting ClusteredProcessing.MaxFilesToPickup to customize
how many files at a time are picked up by each computer. This allows you to offload processing to
the faster computers, but still provide you with fail over protection if one of the computers in the
cluster goes down.

6. Save the file; the DCS Editor will validate the file when saving and prompt to resolve any syntax
errors.

7. Start Document Conversion Service and Watch Folder Service on this computer.

8. Repeat these steps to add more computers to the cluster.

Starting Conversion

Once all the nodes in the cluster have configured, and Document Conversion Service and Watch
Folder Service are started on each computer, you can then start dropping files into the C:
\PEERNET\WatchFolder\CLUSTERED\ConvertToTIFF\Input on the first computer, ComputerA, for
conversion.

Document Conversion Service 3.0

207 Converting Files with Document Conversion Service

High Performance Clustering and Fail Over Conversion

Each computer in the cluster will check the InputFolder for files to process and will pick up a subset of
files to process. The number of files picked up defaults to the NumberOfDocumentsInParallel settings
in the General settings section of the application configuration file but can be overridden in each
individual watch folder section using the ClusteredProcessing.MaxFilesToPickup setting.

Clustering - Using an External Network Share

A more common approach would be an existing network share and several computers (or virtual
machines) all looking at the same location on the share drive for files to process. With this approach, you
will need an account that has access to the network share that can be used to run the Watch Folder
Service on each computer, and Document Conversion Service installed on all of the computers in the
cluster using the local DCSAdmin account created during installation.

Setting up the Network Share

On the network share you will need four folders as shown below. The network share names here are
just sample names;replace these with your actual network share name and paths.

Folder on Network Watch Folder
Setting

Description

\\NetworkShareA\Clustered\Input InputFolder This is the folder that is
watched for files (and
folders if
IncludeSubfolders is true)
to convert.

\\NetworkShareA\Clustered\Output OutputFolder The converted files are
copied into this folder when
the conversion is done.

\\NetworkShareA\Clustered\Failed FailedFolder If any file fails to convert,
they are copied into a folder
under this location.

\\NetworkShareA\Clustered\Completed CompletedFolder This is optional. If set, the
source files and folders that
are dropped into the
InputFolder location are
copied into this folder when
the conversion is complete.
If this setting is set to an
empty string ("") or is not
included is the settings the
source files are deleted.

Setting up the Computers

The following steps need to be done for each computer you want as part of the cluster.

1. Install Document Conversion Service and, when prompted, allow the install to create the local
DCSAdmin administrator account.

208

Document Conversion Service 3.0

Converting Files with Document Conversion Service

High Performance Clustering and Fail Over Conversion

2. Go to Start - Control Panel - System and Security - Administrative Tools -
Services (or type "Services" into the search field on the Start menu). The Watch
Folder Service Log On credentials need to be changed to use the domain or other
account that has access to the network share location. This is critical as the Watch
Folder Service will run under this account and needs to have full access to the
network share to be able to read/write and lock the files as part of the clustered
conversion. The setup initially sets the service to use the DCSAdmin as part of the
install.

3. In the Services control panel applet, locate the service PEERNET Watch Folder Service
and double-click it to open its Properties dialog.

4. On the Log On tab, set the service account to the domain or other account that has
access to the network share. This account will also need the Logon As A Service right.
This right is automatically granted through the services panel when possible,
otherwise talk to your IT Admin to add this privilege to the account.

5. Click Apply and close the Services panel. Do not start the service at this point!

Document Conversion Service 3.0

209 Converting Files with Document Conversion Service

High Performance Clustering and Fail Over Conversion

6. Open the Watch Folder Service configuration file in the DCS Editor by going to Start
- All Programs - PEERNET Document Conversion Service 3.0 - Watch Folder -
Configure Watch Folder Settings.

7. Find and edit the Clustered ConvertToTIFF Watch Folder section to use the network
share path for its InputFolder, OutputFolder and FailedFolder. If you are using
the CompletedFolder, set the path for that as well. Keep the StagingFolder and
WorkingFolder local to each computer in the cluster.

Code Sample - Clustered Conversion

<WatchFolders>
 <!-- This watch folder is configured for clustered processing -->
 <!-- it creates 300 DPI Optimized TIFF Images -->
 <WatchFolder Name="Clustered ConvertToTIFF Watch Folder">
 <Settings>

 <!-- The InputFolder, FailedFolder, CompletedFolder and OutputFolder can point to shared folders -->
 <add Name="InputFolder" Value="\\NetworkShareA\Clustered\Input"/>
 <add Name="SearchFilter" Value="*.*"/>
 <add Name="IncludeSubFolders" Value="True"/>
 <add Name="DeleteInputSubFolders" Value="True"/>
 <add Name="FailedFolder" Value="\\NetworkShareA\Clustered\Failed"/>
 <add Name="CompletedFolder" Value="\\NetworkShareA\Clustered\Completed"/>
 <add Name="OutputFolder" Value="\\NetworkShareA\Clustered\Output"/>

 <!-- Keep these folders on separate computers for clustering. -->
 <add Name="StagingFolder"
 Value="C:\PEERNET\WatchFolders\CLUSTERED\ConvertToTIFF\Staging"/>
 <add Name="WorkingFolder"
 Value="C:\PEERNET\WatchFolders\CLUSTERED\ConvertToTIFF\Failed"/>

 ...

 <!-- Clustered Processing -->
 <!-- This forces batch mode processing with synchronous wait and -->
 <!-- no date time stamp used in the Failed\Completed folders -->
 <add Name="ClusteredProcessing.Enabled" Value="true"/>
 <!-- Override this for clustering to customize pickup -->
 <!-- <add Name="ClusteredProcessing.MaxFilesToPickup" Value="4"/> -->
 ...

 </Settings>
 </WatchFolder>
</WatchFolders>

8. If desired, you can use the setting ClusteredProcessing.MaxFilesToPickup to
customize how many files at a time are picked up by each computer. This allows you to
offload processing to the faster computers, but still provide you with fail over
protection if one of the computers in the cluster goes down.

9. Save the file; the DCS Editor will validate the file when saving and prompt to resolve any syntax
errors.

10. Start Document Conversion Service and Watch Folder Service on this computer.

11. Repeat these steps to add more computers to the cluster.

210

Document Conversion Service 3.0

Converting Files with Document Conversion Service

Processing Outlook and EML Mail Messages and Attachments

Processing Outlook and EML Mail Messages and Attachments

Starting with Document Conversion Service 3.0.009, the Watch Folder Service includes the ability to
extract and convert any attachments in Outlook Message files (*.msg) as well converting the Outlook
message file itself.

In Document Conversion Service 3.0.029, support for Electronic Mail messages (*.eml) files with
attachments was added. EML is the standard file extension for email files stored using the Internet
Message Format protocol. This format complies with the RFC 5322 industry standard. They can be single
messages, or include attachments.

When this option is enabled, the file is checked for attachments and if any are found, the original message
file and all of its attachments are converted. The initial settings have the resulting files placed into the
OutputFolder under a sub folder of the same name as the original file. If any attachments are not of a file
type supported by Document Conversion Service, the attachment will not be converted and is placed in the
Failed folder.

The original message and all attached files and embedded images in the e-mail and signature are
processed. This includes recursively processing attachments that are Outlook Messages or EML files that
themselves have attachments. All message content and file attachments are extracted into a sub folder of
the same name as the original file. If any name collisions are detected, the file names are made to be
unique by adding a number in brackets at the end. As an example, an email message with an attached
PDF document named lorem.pdf and an attached message that also has an attached PDF document of
the same name will create two files - lorem.pdf.tif and lorem(2).pdf.tif.

The sample message below, Test Email With Attachments.msg, contains a single attached PDF file, as
well as 5 small images from the signature. When the MSG is processed, the original message file and all
attachments are processed. The attached PDF file will retain its name, and the inline images that are part
of the signature will be named image001 through to image005.

When processing the above message, the option to keep the original filename's extension as part of the
new filename was enabled. This can be disabled using the setting <add Name ="Save;Remove filename
extension" Value ="1"/>. When this option is disabled, the output file from a file named lorem.pdf would
become lorem.tif instead of lorem.pdf.tif.

Document Conversion Service 3.0

211 Converting Files with Document Conversion Service

Processing Outlook and EML Mail Messages and Attachments

Several settings have been added to control email message file attachment processing. Each of the
included pre-configured WatchFolders already have these new settings added with the attachment
processing disabled. To enable attachment processing, simply uncomment the setting
PreprocessArchiveFormatsFilter. To disable it, you can comment it out again, or set it as an empty
string.

MSG and EML Extraction Subfolder Options

PreprocessArchive.IncludeExtensionInFolderName

Allows you to control whether or not the .msg or .eml file extension is included in the name used to created
the subfolder that will hold the message and attachments for processing. In the screenshot above, the
.msg file extension was kept as part of the subfolder name. To minimize possible name collision, we
recommend leaving this option enabled.

PreprocessArchive.CreateAllOutputInSubfolder

Added in version 3.0.025, this option controls if the MSG or EML file and extracted attachments will be
stored in a subfolder, or at the root of the output folder. To minimize possible name collision, we
recommend leaving this option enabled unless you are certain of unique filenames, or are using Unique
File Naming and Flat Folder Structures and the MSG and EML Unique File Naming Options below.

MSG and EML Extraction Filtering

The next three settings are specific to handling, or filtering what message file attachments actually get
converted. They apply to both MSG and EML files.

The first setting determines if inline attachments are converted, and the second two settings allow for
further filtering of what e-mail attachments will be processed. These filtering options are applied in the
order of inline attachments, include filter and then finally exclude filter.

Most often only one of the include or exclude filter will be used at a time, depending on how you need to
filter. It is easier to say exclude only "*.jpg" attachments , or include only "*.pdf" attachments than to write
long, specific lists of all of the file types.

PreprocessArchive.MSG.IncludeInlineAttachments

Message attachments can be inline (pasted into the email body) or attached as separate files. Images
used in signatures are often inline attachments, while a PDF file attached to the email would not be. You
can disable the processing of all inline attachments by setting this value to false. As some inline
attachments can actually be documents, setting this to False is not recommended. This setting is always
checked first before the message attachment filtering settings below.

PreprocessArchive.MSG.AttachmentsIncludeFilter

Allows for filtering of what attachments will be processed. When set to an empty string, all attachments are
processed. To filter for specific file types, enter in the extensions for each type separated by the pipe (|)
character. For example, to only convert any attached Word and PDF documents, you could set this as
<add Name="PreprocessArchive.MSG.AttachmentsIncludeFilter" Value="*.doc|*.docx|*.pdf" />. This
setting is always applied after the inline attachment check above and before the exclude filter check
below.

PreprocessArchive.MSG.AttachmentsExcludeFilter

The last filtering setting, and also the setting applied last, is the exclude filter, which determines what files
(by extension) to not extract from the MSG. As with the include filter above, enter in the extensions for

212

Document Conversion Service 3.0

Converting Files with Document Conversion Service

Processing Outlook and EML Mail Messages and Attachments

each file type you do not want to be converted, separated by the pipe (|) character. When left as an empty
string, no files are excluded.

MSG and EML Image Attachment Options

Image attachments are converted to the new format using the source image's resolution and not the
requested output format resolution. This applies when converting to image as well as PDF files. Up-scaling
images to a higher resolution can result in images that are many times larger than the actual source
image. Other factors such as going from JPG to a lossless format like TIFF can also cause an increase in
file size.

PreprocessArchive.MSG.ImageAttachmentsKeepSourceResolution

This defaults to true. Conversion options such as fax mode and other image option actions can override
this. This setting overrides the ConverterPlugIn.PNImageConverter.KeepSourceImageResolution setting
and applies only to images extracted from an MSG or EML. Setting this to false may cause images to be
very large.

Controlling Image Size With Compression

Another way to control the size of extracted and converted images is by setting the compression option for
the output format. As an example,converting a JPG image such as a photograph from a camera to a TIFF
image using the default settings of LZW compression will create a very large file.

To create a comparable TIFF image, we need to change the compression to one of the JPEG
compression options for TIFF.

Code Sample - Controlling Image Size with Compression

<WatchFolders>

 <!-- This watch folder creates 300 DPI Optimized TIFF Images -->
 <WatchFolder Name="ConvertToTIFF Watch Folder">
 <Settings>
 <!-- Folder options -->
 ...

 <!-- Use JPEG compression in TIFF images for smaller files from photographs -->
 <add Name="TIFF File Format;BW compression" Value="Group4"/>
 <add Name="TIFF File Format;Color compression" Value="High quality JPEG"/>
 <add Name="TIFF File Format;Indexed compression" Value="High quality JPEG"/>
 <add Name="TIFF File Format;Greyscale compression" Value="High quality JPEG"/>

 </Settings>
 </WatchFolder>
</WatchFolders>

MSG and EML Unique File Naming Options

Added in version 3.0.025, these options add the ability to apply unique names for all MSG and EML and
attachments as they are processed when using the existing Unique File Naming and Flat Folder
Structures settings. If either or both of OutputFolder.PrependUniqueGUIDToFilename or
OutputFolder.AppendUniqueGUIDToFilename are true, a Globally Unique ID, or GUID is added to the
output filename for the MSG and any extracted attachments.

The default behavior is to use the same GUID in both the MSG subfolder (if using) and in all extracted and
converted attachments.

Document Conversion Service 3.0

213 Converting Files with Document Conversion Service

Processing Outlook and EML Mail Messages and Attachments

PreprocessArchive.MSG.UseUniqueGUIDInMSGFolderName

Controls if a GUID is used in the MSG or EML folder name created to store the converted MSG or EML
and attachments. Applies when PreprocessArchive.CreateAllOutputInSubfolder is true.

PreprocessArchive.MSG.UseSameGUIDForAllFiles

The default behavior is to use the same GUID in the folder and for all files extracted and converted into
that folder. To use a random, unique GUID for each file, set this to false.

PreprocessArchive.MSG.UseMessageIDForPrependGUID
PreprocessArchive.MSG.UseMessageIDForApppendGUID

When enabled, any Message ID included in the source email header information is used in place of a
randomly generated GUID when building the output folder and email and attachment filenames. If enabled
and there is no Message ID in the email, the GUID is used instead.

PreprocessArchive.MSG.UseMessageIDWithoutFQDN

An email Message Id consists of a string of characters which is the unique identifier of this message from
the mail server, and ends with ampersand (@) and the Fully Qualified Domain Name (FQDN) of the mail
server that sent the message. By default, we set this option to true to only use the first part of the string.

Sample Watch Folder Setting for MSG and EML Extraction

The last set of highlighted settings shown below are not in the included in the pre-configured WatchFolder
settings. These are some recommended settings to help control the size of the final output files when
dealing with Outlook Messages with attached images and logos in the signatures.

Code Sample - Default Outlook Message Processing

<WatchFolders>

 <!-- This watch folder creates 300 DPI Optimized TIFF Images -->
 <WatchFolder Name="ConvertToTIFF Watch Folder">
 <Settings>
 <!-- Folder options -->
 ...

 <!-- Preprocess Archive Settings -->
 <!-- Comment out or set this as empty string to disable MSG/EML archive processing.-->
 <add Name="PreprocessArchiveFormatsFilter" Value=".msg|*.eml" />
 <!-- Setting this to false is not recommend as it increases -->
 <!-- the chance of archive and folder name collision. -->
 <add Name="PreprocessArchive.IncludeExtensionInFolderName" Value="true" />
 <!-- Setting this to false is not recommend as it increases the chance of archive -->
 <!-- and folder name collision. Can be used in with OutputFolder.PrependUniqueGUIDToFilename or -->
 <!-- OutputFolder.AppendUniqueGUIDToFilename to flatten the structure and create unique names. -->
 <add Name="PreprocessArchive.CreateAllOutputInSubfolder" Value="true" />

 <!-- Preprocess MSG Archive Settings -->
 <add Name="PreprocessArchive.MSG.IncludeInlineAttachments" Value="true" />
 <!-- Pipe (|) separated list of file extensions (e.g *.doc|*.docx) to match on when -->
 <!-- processing message attachments. Pass empty string for match all. Runs after -->
 <!-- inline attachment check above, precedes exclusion check below.-->
 <add Name="PreprocessArchive.MSG.AttachmentsIncludeFilter" Value="" />
 <!-- Pipe (|) separated list of file extensions (e.g *.png|*.jpg) to exclude when -->
 <!-- processing message attachments. Pass empty string to exclude none. -->
 <add Name="PreprocessArchive.MSG.AttachmentsExcludeFilter" Value="" />
 <!-- When converting image attachments to images, keep the new image's resolution the -->
 <!-- same as source image. Fax mode and other image option actions can override this. -->

214

Document Conversion Service 3.0

Converting Files with Document Conversion Service

Processing Outlook and EML Mail Messages and Attachments

 <!-- This setting overrides ConverterPlugIn.PNImageConverter.KeepSourceImageResolution -->
 <add Name="PreprocessArchive.MSG.ImageAttachmentsKeepSourceResolution" Value="True" />

 <!-- The following settings are only used if OutputFolder.PrependUniqueGUIDToFilename -->
 <!-- or OutputFolder.AppendUniqueGUIDToFilename are set to true. -->
 <!-- When below is set to true, all files extracted from an MSG will have the same GUID. -->
 <add Name="PreprocessArchive.MSG.UseSameGUIDForAllFiles" Value="true" />
 <!-- When set to true, the folder used to store the msg and its attachments will -->
 <!-- be formatted with the pre-post GUID strings as set. -->
 <!-- If PreprocessArchive.MSG.UseSameGUIDForAllFiles is also true, the GUID -->
 <!-- in the folder name will match the files underneath. -->
 <add Name="PreprocessArchive.MSG.UseUniqueGUIDInMSGFolderName" Value="true" />
 <!-- When set to true, all files extracted from an MSG will use the ID, including -->
 <!-- the Fully Qualified Domain Name (FQDN) -->
 <add Name="PreprocessArchive.MSG.UseMessageIDForPrependGUID" Value="true" />
 <add Name="PreprocessArchive.MSGUseMessageIDForAppendGUID" Value="true" />
 <!-- Set this to true to only use the first part of the Message ID, -->
 <!-- dropping the @FQDN part. -->
 <add Name="PreprocessArchive.MSG.UseMessageIDWithoutFQDN" Value="true" />

 <!-- Keep image resolution the same as source. Applies to all images-->
 <add Name="ConverterPlugIn.PNImageConverter.KeepSourceImageResolution" Value="True"/>

 <!-- Output file options -->
 <add Name="Devmode settings;Resolution" Value="300"/>

 <add Name="Save;Output File Format" Value="TIFF Multipaged"/>
 <!-- Replace the above with this to create serialized images. -->
 <!-- <add Name="Save;Output File Format" Value="TIFF Serialized"/> -->

 <add Name="Save;Append" Value="0"/>
 <add Name="Save;Color reduction" Value="Optimal"/>
 <add Name="Save;Dithering method" Value="Halftone"/>

 <!-- This creates file.ext.tif, change to 1 to create file.tif-->
 <add Name="Save;Remove filename extension" Value="0" />

 <add Name="TIFF File Format;BW compression" Value="Group4"/>
 <add Name="TIFF File Format;Color compression" Value="High quality JPEG"/>
 <add Name="TIFF File Format;Indexed compression" Value="High quality JPEG"/>
 <add Name="TIFF File Format;Greyscale compression" Value="High quality JPEG"/>

 </Settings>
 </WatchFolder>
</WatchFolders>

Document Conversion Service 3.0

215 Converting Files with Document Conversion Service

Creating Done Files to Signal Completion

Creating Done Files to Signal Completion

Starting with Document Conversion Service 3.0.025, the Watch Folder Service now includes the ability to
create done files. These files can be used by other processes to know when the Watch Folder has
completed conversion of any file dropped into the input folder.

There are two types of files created, a .done file when conversion is successful, and a .failed when a file
could not be converted. These files are created in the root of the output folder by default.

A .done file contains the path to the original file that was dropped into the Watch Folder's input folder, and
then lists all files created. This can be one file, or many if creating serialized output, or when processing
Outlook MSG files and extracting attachments.

A .failed file contains the path to the original file as dropped into the Watch Folder's input folder, and then
the path to the file's location in the Watch Folder's failed folder.

Enabling Done and Failed File Creation

Done and failed file creation is disabled to start. Each one can be enabled or disabled independently.

DoneFile.Success.Create

Set this to true to enable Done file creation.

DoneFile.Failed.Create

Set this to true to enable Failed file creation.

Customizing the File Name and Location

The initial behavior is to create these files in the root of the Output folder using the same name as the
input file, including the extension, and to add the .done or .failed to the end. This can be customized to use
a different folder, use GUIDs instead of the name of the input file, and to use different extensions instead
of the default of .done and .failed.

DoneFile.Success.CustomFolder, DoneFile.Failed.CustomFolder

When left blank, the files are created in the root of the output folder. To create these files in their own
folder, set the path here.

DoneFile.Success.CustomExt, DoneFile.Failed.CustomExt

If you need a different extension instead of the defaults of .done and .failed, set them here. A dot (.) is not
needed. Do not use the same extension for both files if you are saving them to the same location.

DoneFile.Success.UseGUIDName, DoneFile.Failed.UseGUIDName

To use unique GUIDs as the base name of the files instead of the input file, set these to true. This would
create a file similar to 9BE7305721C14242A2BFF4EA06F3FE92.done.

File Contents

The input file is the the first line of information in both the .done file and the .failed file. This can be
disabled to just list the files created.

DoneFile.Success.IncludeSourceFileAsFirstLine, DoneFile.Failed.IncludeSourceFileAsFirstLine

Set this to false if you do not want to have the input file listed as the first item in the done or failed file.

216

Document Conversion Service 3.0

Converting Files with Document Conversion Service

Control Sort Order on File Pickup

Control Sort Order on File Pickup

Starting with Document Conversion Service 3.0.027, the Watch Folder Service now includes the ability to
order the files by name, date created or date modified when picking up files from the Input folder.

There are four sorting options - None, Name, DateCreated, and DateModified. Files can be returned in
Ascending or Descending order.

This only controls the order in which the files are picked up from the directory. It does not guarantee the
order the files are processed in, only that files sorted to the top of the list are submitted for conversion first.
A smaller file further down the list might finish before a larger file that was first in the list.

Configuring the Sort Mode and Order

Sort order defaults to name and ascending when picking up files. Files in the root of the input folder are
picked up and sorted first. If sub folders are enabled, they are searched in alphabetical order. Any files in
each sub folder are then sorted and returned.

Preprocess.SortFiles

There are four sorting modes that can be used:

· None - No ordering is used. Files are returned in the order they were given to us from the
underlying file system.

· Name - This is the default if the setting is not found or the value is incorrect. Files are sorted based
on the full path name of the source file in the input folder.

· DateCreated - Files are sorted based on their creation date. For watch folders where files are
dropped, a file can be moved or copied into the folder. If the files are moved into the Input folder
they will retain their original created date. Copying a file into the Input folder wil set the created date
to the time of the copy.

· DateModified - Files are sorted based on when they were last modified on the computer.

Preprocess.SortFilesOrder

This sets the order of the files. The default is Ascending.

· Ascending - sorted the files from low to high: 0-9, A-Z.

· Descending - sorts the files from high to low: Z-A, 9-0.

Document Conversion Service 3.0

217 Converting Files with Document Conversion Service

Post-Conversion Processing

Post-Conversion Processing

Starting with Document Conversion Service 3.0.010, the Watch Folder Service now includes the ability run
a separate command in the success and failure cases at the end of conversion.

For version 3.0.010, if the conversion is successful, the command is run for each file created by the
conversion. This means that if you are creating serialized files, the command will be run for every file
created. If the conversion fails, the command for the failed scenario is run on the original source file.

This was updated in version 3.0.015 so that the commands are not run until the successfully created files
are copied into the output folder, or for the failure case, when the original source file is copied into the
failed folder. Also, the default behavior for the success command has been changed to only run the
command a single time, instead of once for each file. A new parameter has been added that allows you to
change this back so that the command is run for each file.

Also new with version 3.0.015 is a parameter to enable the creation of a text file containing a list of all of
the files created. This file is created in the watched folders's OutputFolder location. it is named using the
source file name, a random suffix and ends with the extension .wfsoutputlist. You are responsible for
deleting this file when you are done with it.

Macros for the source file name, the output list, the number of files created, and other information is
available to use in your command line parameters to pass this information into your command. There are
different macros for the Success and Failed options; a full list is provided below.

The defaults for running a command are not to wait for the command to complete before continuing. If you
do need to wait for the command to be completed, this can be changed, and there is a maximum timeout
value that must be specified to allow the process to move ahead if the command does something
unexpected.

Shown below are sample post-conversion options to process the created files as a group, or to process
each file individually. They use the fictional command line tools BatchUploadToServer.exe,
UploadToServer.exe and TriggerEmailFail.exe. These executable names are placeholders that you would
replace with your own command line tools that fit your workflow. Thes command line tools are not part of
Document Conversion Service.

See the table below for a full description of each setting.

Code Sample - Sample Post Conversion Commands - Run Once on
Success/Fail

<WatchFolders>

 <!-- This watch folder creates 300 DPI Optimized TIFF Images -->
 <WatchFolder Name="ConvertToTIFF Watch Folder">
 <Settings>
 <!-- Folder options -->
 ...

 <!-- Run Command at End On Success -->
 <!-- Run the command once, passing in the list of created files -->
 <!-- and the original source file. -->
 <add Name="RunAtEnd.Success.Enabled" Value="true" />
 <add Name="RunAtEnd.Success.Command" Value="C:\MyTools\BatchUploadToServer.exe" />
 <add Name="RunAtEnd.Success.RunForEachFile" Value="false" />
 <add Name="RunAtEnd.Success.CreateOutputFileList" Value="true" />
 <add Name="RunAtEnd.Success.Parameters"
 Value=""$(OutputFileList)" "$(SourceFileName)"" />
 <add Name="RunAtEnd.Success.StartDirectory" Value="" />
 <!-- ** Internal Use Only ** - One of Normal, Min, Max, Hidden (default) -->
 <add Name="RunAtEnd.Success.WindowState" Value="Hidden" />
 <!-- Wait mode for the command, one of WaitForCompletion, WaitWithExitCode, DoNotWait (default)-->
 <add Name="RunAtEnd.Success.WaitMode" Value="DoNotWait" />

218

Document Conversion Service 3.0

Converting Files with Document Conversion Service

Post-Conversion Processing

Code Sample - Sample Post Conversion Commands - Run Once on
Success/Fail

 <!-- Default is 3 minutes -->
 <add Name="RunAtEnd.Success.WaitModeMaxTime" Value="180000" />

 <!-- Run Command at End On Failure -->
 <!-- If a file fails to convert, send an email with the path to the failed file.-->
 <add Name="RunAtEnd.Fail.Enabled" Value="true" />
 <add Name="RunAtEnd.Fail.Command" Value="C:\MyTools\TriggerFailEmail.exe" />
 <add Name="RunAtEnd.Fail.Parameters"
 Value=""$(FailedFilePath)" "$(SourceFileName)"" />
 <add Name="RunAtEnd.Fail.StartDirectory" Value="" />
 <!-- ** Internal Use Only ** - One of Normal, Min, Max, Hidden (default) -->
 <add Name="RunAtEnd.Fail.WindowState" Value="Hidden" />
 <!-- Wait mode for the command, one of WaitForCompletion, WaitWithExitCode, DoNotWait (default)-->
 <add Name="RunAtEnd.Fail.WaitMode" Value="DoNotWait" />
 <!-- Default is 3 minutes -->
 <add Name="RunAtEnd.Fail.WaitModeMaxTime" Value="180000" />
 ...

 </Settings>
 </WatchFolder>
</WatchFolders>

Code Sample - Sample Post Conversion Commands - Run for Each File on
Success/Once on Fail

<WatchFolders>

 <!-- This watch folder creates 300 DPI Optimized TIFF Images -->
 <WatchFolder Name="ConvertToTIFF Watch Folder">
 <Settings>
 <!-- Folder options -->
 ...

 <!-- Run Command at End On Success -->

 <!-- Run the command for each file created, passing in the created file name -->
 <!-- and the original source file. For serialized output this command is run multiple times.-->
 <add Name="RunAtEnd.Success.Enabled" Value="true" />
 <add Name="RunAtEnd.Success.Command" Value="C:\MyTools\UploadToServer.exe" />
 <add Name="RunAtEnd.Success.RunForEachFile" Value="true" />
 <add Name="RunAtEnd.Success.CreateOutputFileList" Value="false" />
 <add Name="RunAtEnd.Success.Parameters"
 Value=""$(OutputFilePath)" $(OutputFileNumber) $(OutputFileNumberCount)" />
 <add Name="RunAtEnd.Success.StartDirectory" Value="" />
 <!-- ** Internal Use Only ** - One of Normal, Min, Max, Hidden (default) -->
 <add Name="RunAtEnd.Success.WindowState" Value="Hidden" />
 <!-- Wait mode for the command, one of WaitForCompletion, WaitWithExitCode, DoNotWait (default)-->
 <add Name="RunAtEnd.Success.WaitMode" Value="DoNotWait" />
 <!-- Default is 3 minutes -->
 <add Name="RunAtEnd.Success.WaitModeMaxTime" Value="180000" />

 <!-- Run Command at End On Failure -->
 <!-- If a file fails to convert, send an email with the path to the failed file.-->
 <add Name="RunAtEnd.Fail.Enabled" Value="true" />
 <add Name="RunAtEnd.Fail.Command" Value="C:\MyTools\TriggerFailEmail.exe" />
 <add Name="RunAtEnd.Fail.Parameters"
 Value=""$(FailedFilePath)" "$(SourceFileName)"" />
 <add Name="RunAtEnd.Fail.StartDirectory" Value="" />
 <!-- ** Internal Use Only ** - One of Normal, Min, Max, Hidden (default)-->
 <add Name="RunAtEnd.Fail.WindowState" Value="Hidden" />
 <!-- Wait mode for the command, one of WaitForCompletion, WaitWithExitCode, DoNotWait (default)-->
 <add Name="RunAtEnd.Fail.WaitMode" Value="DoNotWait" />
 <!-- Default is 3 minutes -->

Document Conversion Service 3.0

219 Converting Files with Document Conversion Service

Post-Conversion Processing

Code Sample - Sample Post Conversion Commands - Run for Each File on
Success/Once on Fail

 <add Name="RunAtEnd.Fail.WaitModeMaxTime" Value="180000" />
 ...

 </Settings>
 </WatchFolder>
</WatchFolders>

220

Document Conversion Service 3.0

Converting Files with Document Conversion Service

Post-Conversion Processing

RunAtEnd Success Commands:

Key Value

RunAtEnd.Success.Enabled Set this to true to run the specified command when
conversion succeeds.

Starting with version 3.0.015 the default is to run the
command ONCE at the end of conversion, when all the
files have been created. This means that even when you
are creating serialized output, the command is only
called once.

To run the command for EACH FILE created, set
RunAtEnd.Success.RunForEachFile to true. This
matches the original behavior from version 3.0.010 when
the run commands were first introduced.

RunAtEnd.Success.RunForEachFile Introduced in version 3.0.015.

The default for this is false, meaning the command will
only be run a single time when conversion succeeds and
all output files are successfully copied into the Output
folder.

Change this value to true to return to the original
behavior of running the command for each file created
from version 3.0.010. This means the command can be
run multiple times when creating serialized output.

RunAtEnd.Success.CreateOutputFileLi
st

Introduced in version 3.0.015.

Setting this value to true will create a Unicode text file
that lists all files created. This file is created in the
OutputFolder location and is named based on the source
file name, a random suffix and the extension
.wfsoutputlist. Use the variable $(OutputFileList) to pass
the file name to your command.

You are responsible for deleting this file when you
are done with it.

RunAtEnd.Success.Command The full path to the command to be executed without
arguments. Default is an empty string, no command to
run.

RunAtEnd.Success.Parameters The parameters for the command. Use the HTML code
to put the command in quotes if there are spaces, and to
enclose parameters. The following variables are
available to pass arguments to the command.

$(OutputFilePath) - this is the full path to the converted
file. Beginning with version 3.0.015 , when creating
serialized output this is the last file created in the set
unless RunAtEnd.Success.RunForEachFile is true, in
which case it is the full path to the converted file.

Document Conversion Service 3.0

221 Converting Files with Document Conversion Service

Post-Conversion Processing

Key Value

$(SourceFileName) - this is the file name of the original
file.

Introduced in version 3.0.015:
$(OutputFileList) - valid when
RunAtEnd.Success.CreateOutputFileList is set to true,
this variable is the full path to a Unicode text file
containing a list of all the files created, one per line. This
list can be a single file, for multipaged conversion, or
many files in the case of serialized conversion. See the
parameter for more information.
$(OutputFileNumber) - this is the numerical index of the
file being processed in the run command. Index starts at
1.
$(OutputFileNumberCount) - this is the number of files
created, not including any text extraction files.

RunAtEnd.Success.StartDirectory The directory in which to run the command. Default is an
empty string.

RunAtEnd.Success.WindowState This option is for internal use only; we recommend
leaving this set to the default of Hidden.

The view state of the command window when it is run.

Normal - display the window in its normal state.
Min - display the window minimized to the taskbar
Max - display the window maximized.
Hidden - do not show the window. (Default)

RunAtEnd.Success.WaitMode Optionally wait for the command to complete before
continuing. The default is to not wait.

If WaitForCompletion or WaitWithExitCode is chosen,
the RunAtEnd.Success.WaitModeMaxTime value is
always used to stop the command if it has not returned
after the set amount of time.

WaitForCompletion - wait for the command to complete
before continuing.
WaitWithExitCode - waits for the command to complete
and emits the exit code in the log.
DoNotWait - does not wait for the command to
complete. (Default)

RunAtEnd.Success.WaitModeMaxTime The maximum amount of time to wait for the command
being run to complete. Default is 3 minutes.

222

Document Conversion Service 3.0

Converting Files with Document Conversion Service

Post-Conversion Processing

RunAtEnd Fail Commands:

Key Value

RunAtEnd.Fail.Enabled Set this to true to run the specified command on the
original file if the conversion fails. Default is false.

RunAtEnd.Fail.Command The full path to the command to be executed without
arguments. Default is an empty string, no command to
run.

RunAtEnd.Fail.Parameters The parameters for the command. Use the HTML code
to put the command in quotes if there are spaces, and to
enclose parameters. The following variables are
available to pass arguments to the command.

$(FailedFilePath) - this is the path to the original file in
its failed location.
$(SourceFileName) - this is the file name of the original
file.

RunAtEnd.Fail.StartDirectory The directory in which to run the command. Default is an
empty string.

RunAtEnd.Fail.WindowState This option is for internal use only; we recommend
leaving this set to the default of Hidden.

The view state of the command window when it is run.

Normal - display the window in its normal state.
Min - display the window minimized to the taskbar
Max - display the window maximized.
Hidden - do not show the window. (Default)

RunAtEnd.Fail.WaitMode Optionally wait for the command to complete before
continuing. The default is to not wait.

If WaitForCompletion or WaitWithExitCode is chosen,
the RunAtEnd.Fail.WaitModeMaxTime value is always
used to stop the command if it has not returned after the
set amount of time.

WaitForCompletion - wait for the command to complete
before continuing.
WaitWithExitCode - waits for the command to complete
and emits the exit code in the log.
DoNotWait - does not wait for the command to
complete. (Default)

RunAtEnd.Fail.WaitModeMaxTime The maximum amount of time to wait for the command
being run to complete. Default is 3 minutes.

Document Conversion Service 3.0

223 Converting Files with Document Conversion Service

Unique File Naming and Flat Folder Structures

Unique File Naming and Flat Folder Structures

Starting with Document Conversion Service 3.0.019, the Watch Folder Service now includes the ability to
create each output file with a unique name, as well as being able to flatten any folder structure used or
dropped into the InputFolder.

What is Flattening Folder Structures?

When you flatten a folder structure, the idea is to remove all subfolders (and subfolders of folders, etc.) of
a particular folder, and place all of the files into a single folder.

The default Watch Folder behavior is to maintain any folder structure found in the InputFolder when
looking for files to convert, which recreates the folder structure in the OutputFolder. This can be disabled
to allow the creation of all output files in the OutputFolder location, essentially flattening the folder.

The setting OutputFolder.MaintainInputFolderStructure controls this behavior. It defaults to true,
meaning it keeps the folder structure. Set this to false to create all output files in a single folder.

Caution

If you are flattening folders you may encounter files with the same names coming from different
subfolders. Use the Unique File Names settings below to create each filename with a unique
name in the OutputFolder.

Unique File Names

Each Watch Folder can be configured to create a unique filename for every file that if finds. This is
especially useful if you are flattening folders as explained above.

The unique file names are created using Globally Unique IDs, or GUIDs. A GUID is a sequences of
alphanumeric characters, such as 4c4636f7-e9c5-4c4c-97af-081a328ba7c5, that is for all practical
purposes, unique. These unique strings can be placed before, after or both before and after the base
filename to create unique output file names.

Use OutputFolder.PrependUniqueGUIDToFilename and
OutputFolder.AppendUniqueGUIDToFilename set to true to control if a GUID is added and where it is
placed. The setting OutputFolder.RemoveHyphensFromGUID allows the hyphens to be removed from
the GUID, leaving the GUID as a string of alphanumeric characters
(4c4636f7e9c54c4c97af081a328ba7c5).

An default separator string of an underscore character (_) is used between the GUD and the original
filename. It is defined using the OutputFolder.UniqueGUIDSeparatorCharacter setting. This can be
changed to a different character, a sequence of characters or left as an empty string to not use the
separator character between the GUID and the filename. If any invalid file naming characters such as <, >,
or others, are found in this string, it will default back to a single underscore.

When creating serialized output, where each output file is a single page from the input document, each file
in the sequence will have the same GUID. Set OutputFolder.UseSameGUIDForEachSerializedFile to
false to use a unique GUID for each file in the sequence.

224

Document Conversion Service 3.0

Converting Files with Document Conversion Service

Unique File Naming and Flat Folder Structures

Code Sample - Sample Flattening and Unique Naming Settings

<WatchFolders>

 <WatchFolder Name="ConvertToTIFF Watch Folder">
 <Settings>
 ...

 <!-- Flatten folder structure and add a GUID to the beginning of the filename. -->
 <!-- 4c4636f7-e9c5-4c4c-97af-081a328ba7c5_ Filename.tif. -->

 <add Name="OutputFolder.MaintainInputFolderStructure" Value="false" />

 <add Name="OutputFolder.PrependUniqueGUIDToFilename" Value="true" />
 <add Name="OutputFolder.AppendUniqueGUIDToFilename" Value="false" />
 <add Name="OutputFolder.UseSameGUIDForEachSerializedFile" Value="true" />

 <add Name="OutputFolder.RemoveHyphensFromGUID" Value="false" />
 <add Name="OutputFolder.UniqueGUIDSeparatorCharacter" Value="_" />
 ...

 </Settings>
 </WatchFolder>
</WatchFolders>

Document Conversion Service 3.0

225 Converting Files with Document Conversion Service

Skipping Files with the Passthrough Converter

Skipping Files with the Passthrough Converter

The PEERNET Passthrough converter is a by-pass mechanism that allows files to be sent through the
Document Conversion Service without actually being converted. This type of behavior is useful when
dealing with a group of files where some of the input files sent may already be in the desired output format,
but you still need them moved to your final destination for further processing.

The PEERNET Passthrough converter will work with any file type as it uses the file's extension to
recognize which file types to skip.

For example, if you have the Watch Folder Service configured to convert any files dropped into a specific
folder into TIFF files, you can configure the Watch Folder Service to send any files with the ".tif" or ".tiff"
extension to the PEERNET Passthrough converter where they are moved directly to the final destination
without being converted.

Using the Passthrough Converter with the Watch Folder Service

The steps below show how to take an existing Watch Folder Service folder definition that creates TIFF
images and modify it so that the Passthrough converter is used to skip converting any TIFF images.
Any TIFF images are moved to the output folder without being converted. This same technique can be
used on any file extension.

1. Open the configuration file in the DCS Editor by going to Start - All Programs - PEERNET
Document Conversion Service 3.0 - Watch Folder - Configure Watch Folder
Settings.

2. In the configuration file, look for the desired the <WatchFolder> section; there can be more than
one. To have only this <WatchFolder> section use the Passthrough converter for TIFF images,
add the PEERNET Passthrough converter to the beginning of the list of converters to use for TIFF
images.

Code Sample - Skip TIFF images on a single watch folder

<WatchFolders>
 <WatchFolder Name="Folder Watch Create TIFF Images">
 <Settings>
 <!-- Folder options -->
 <add Name="InputFolder" Value="C:\PEERNET\Test\Input"/>
 <add Name="SearchFilter" Value="*.*"/>
 ...
 <add Name ="Devmode settings;Resolution" Value="200"/>
 <add Name ="Save;Output File Format" Value="TIFF Multipaged" />
 <add Name ="Save;Append" Value ="0"/>
 ...
 <!-- Skip tiff images in this folder, move them to output. -->
 <add Name=".tif"
 Value="PEERNET Passthrough;PEERNET Image Converter;Outside-In AX" />
 <add Name=".tiff"
 Value="PEERNET Passthrough;PEERNET Image Converter;Outside-In AX" />
 ...
 </Settings>
 </WatchFolder>
</WatchFolders>

3. To have all <WatchFolders> use the Passthrough converter for TIFF images, the change needs to
be done in the <Settings> section at the bottom of the configuration file.

226

Document Conversion Service 3.0

Converting Files with Document Conversion Service

Skipping Files with the Passthrough Converter

Code Sample - Skip TIFF images on all WatchFolders

<WatchFoldersSection>
 <WatchFolders>
 ...
 <!-- This Watch folder watches a folder on your local machine -->
 <WatchFolder Name="Folder Watch Local Drive">
 <Settings>
 <!-- Folder options -->
 <add Name="InputFolder" Value="C:\PEERNET\Test\Input"/>
 ...
 </Settings>
 </WatchFolder>
 </WatchFolders>

 <Settings>
 <!-- File Extension to Converter Mapping -->
 <!-- These can be added to the Settings section for each WatchFolder -->
 <!-- to tailor each WatchFolder to use different converters for its -->
 <!-- documents. The individual settings take precedence over the -->
 <!-- global WatchFolderSection settings section -->
 <add Name=".doc" Value="Microsoft Word;Outside-In AX" />
 <add Name=".docx" Value="Microsoft Word;Outside-In AX" />
 ...
 <!-- Skip tiff images in this folder, move them to output. -->
 <add Name=".tif"
 Value="PEERNET Passthrough;PEERNET Image Converter;Outside-In AX" />
 <add Name=".tiff"
 Value="PEERNET Passthrough;PEERNET Image Converter;Outside-In AX" />

 <add Name=".bmp" Value="PEERNET Image Converter;Outside-In AX" />
 <add Name=".jpg" Value="PEERNET Image Converter;Outside-In AX" />
 <add Name=".jpeg" Value="PEERNET Image Converter;Outside-In AX" />
 </Settings>
</WatchFoldersSection>

4. Save the configuration file; the DCS Editor will validate the file when saving and prompt to resolve
any syntax errors.

5. Restart the Watch Folder Service to have your new changes applied.

Document Conversion Service 3.0

227 Converting Files with Document Conversion Service

Large Volume Batch Conversion Using Clustering

Large Volume Batch Conversion Using Clustering

Introduced in Document Conversion Service 3.0.010, clustering can be used on a single computer to
efficiently handle converting folders containing a very large number of files.

The Watch Folder Service was initially intended for use with hot folders or drop folders where small
numbers of files to be converted are dropped periodically into a folder. When files are detected in the
input folder, the Watch Folder Service moves the entire contents of the folder to its staging location for
processing. With a folder containing a large volume of files this causes long time delays as the files are
copied as well as potential issues such as not having enough disk space to copy the files.

When clustering mode is enabled, a small number of files in the input folder are locked and then copied to
the staging folder for processing. The original file stays in the input folder until it is processed, then
unlocked and copied to the Completed folder. This reduces disk space usage and delays in copying large
numbers of files. It also allows for faster turnaround to move on to the next file.

Enabling Clustering

Clustering can be enabled on any Watch Folder definition using the ClusteredProcessing.Enabled
setting. This setting is false by default.

Keeping the Conversion Service Busy

The goal here is to take advantage of the conversion threads available in your licensed copy of Document
Conversion Service and to keep those threads busy converting documents. The number of conversion
threads you have available depends on your license model.

To maximize throughput, we need to match the number of files that Watch Folder will process in parallel to
the number of conversion threads available in Document Conversion Service, and increase it by a small
amount. This will allow us to keep the conversion threads continuously converting as there will always be a
document or two queued up waiting as long as there are files in our folder left to be processed.

The number of files picked up is initially set to NumberOfDocumentsInParallel from the Watch Folder
Service configuration file. You can override this setting using the
ClusteredProcessing.MaxFilesToPickup setting.

228

Document Conversion Service 3.0

Converting Files with Document Conversion Service

Large Volume Batch Conversion Using Clustering

Code Sample

<WatchFolders>

 <!-- This watch folder creates 300 DPI Optimized TIFF Images -->
 <WatchFolder Name="ConvertToTIFF" >
 <Settings>
 <!-- Folder options -->
 <add Name="Enabled" Value="True"/>
 <add Name="InputFolder"
 Value=""C:\PEERNET\WatchFolders\ConvertToTIFF\Input"/>
 <add Name="SearchFilter" Value="*.*"/>
 <add Name="IncludeSubFolders" Value="True"/>
 <add Name="DeleteInputSubFolders" Value="True"/>
 <add Name="StagingFolder"
 Value="C:\PEERNET\WatchFolders\ConvertToTIFF\Staging"/>
 <add Name="WorkingFolder"
 Value="C:\PEERNET\WatchFolders\ConvertToTIFF\Working"/>
 <add Name="FailedFolder"
 Value="C:\PEERNET\WatchFolders\ConvertToTIFF\Failed"/>
 <add Name="CompletedFolder"
 Value="C:\PEERNET\WatchFolders\ConvertToTIFF\Completed"/>
 <add Name="OutputFolder"
 Value=":\PEERNET\WatchFolders\ConvertToTIFF\Output"/>
 <add Name="PollingInterval" Value="15000"/>
 <add Name="DCOMComputerName" Value=""/>
 <add Name="TestMode" Value="false" />

 <!-- 0 means no limit. -->
 <add Name="Polling.MaxFilesToProcessAtATime" Value="0" />
 <add Name="Polling.SynchronousFilePickup" Value="false" />

 <!-- Clustered Processing -->
 <!-- This forces batch mode pickup with optional synchronous wait and -->
 <!-- no date time stamp used in the Failed\Completed folders. Files are -->
 <!-- locked so other servers can process files from the same folder. -->
 <add Name="ClusteredProcessing.Enabled" Value="true" />
 <!-- Override this for clustering to customize the number of files picked up. -->
 <add Name=""ClusteredProcessing.MaxFilesToPickup" Value="6" />

 <add Name="Devmode settings;Resolution" Value="300"/>
 <add Name="Save;Output File Format" Value="TIFF Multipaged" />
 <!-- <add Name="Save;Output File Format" Value="TIFF Serialized" /> -->

 <add Name="Save;Append" Value="0"/>
 <add Name="Save;Color reduction" Value="Optimal"/>
 <add Name="Save;Dithering method" Value="Halftone"/>

 <!-- This creates file.ext.tif, change to 1 to create file.tif -->
 <add Name="Save;Remove filename extension" Value="1"/>

 <add Name="TIFF File Format;BW compression" Value="Group4"/>
 <add Name="TIFF File Format;Color compression" Value="LZW RGB0"/>
 <add Name="TIFF File Format;Indexed compression" Value="LZW"/>
 <add Name="TIFF File Format;Greyscale compression" Value="LZW"/>
 <add Name="JPEG File Format;Color compression" Value="Medium Quality"/>
 <add Name="JPEG File Format;Greyscale compression" Value="High Quality"/>

 </Settings>
 </WatchFolder>

</WatchFolders>

Document Conversion Service 3.0

229 Converting Files with Document Conversion Service

Large Volume Batch Conversion Using Synchronous File Pickup

Large Volume Batch Conversion Using Synchronous File Pickup

Deprecated - Use Clustering Instead

This method of converting very large folder of files is deprecated in favor of using clustered
processing to automatically pick up the files from the source folder without having to copy large
numbers of files. Clustering is more efficient and allows for higher throughput. See Large
Volume Batch Conversion Using Clustering.

The watch folder, LargeBatchTIFF, included with the Watch Folder Service, is configured to handle folder
containing a large number of files. It picks up a maximum number of files each time, converts them and
returns to continue processing through the collection files until all files are complete.

The Watch Folder Service basic design was for use with hot folders or drop folders where files to be
converted are dropped periodically into a folder. It was meant to handle small groups of files being
dropped occasionally into the input folder. When files are detected in the input folder, the Watch Folder
Service will try and copy the entire contents of the folder to its staging location for processing. When
dealing with a folder containing a large volume of files this can cause large time delays as the files are
copied, and other issues such as not having enough disk space to copy the files.

To allow for processing folders containing a very large number of files, the settings
Polling.MaxFilesToProcessAtATime and Polling.SynchronousFilePickup were added. These settings
are used to control how many files are picked up at every polling interval, and if the first batch of files
needs to complete before the next group is picked up.

In this scenario, you would also typically set UseTimeDateSubFoldersInCompletedFolder and
UseTimeDateSubFoldersInFailedFolder to false so that the date-timestamp folders for each mini-batch
of files are not created under the output and failed folders.

You may also want to add the setting <add Name ="Save;Remove filename extension" Value ="1"/> to
make sure that the file extension from the original source file is not used to name the output file. This
means that the output file from a file named Manual.docx would become Manual.tif. If this settings is not
included, or is set to "0", the output file name would be Manual.docx.pdf.

As an extra precaution, if possible, we recommend making a copy of the original source files and
processing off of the copied. This ensures you still have your original collection of files if anything
unexpected should happen during the conversion process.

230

Document Conversion Service 3.0

Converting Files with Document Conversion Service

Large Volume Batch Conversion Using Synchronous File Pickup

Code Sample

<WatchFolders>

 <!-- This watch folder is set to allow for dropping a large number of files -->
 <!-- at once. The files are picked up in small batches of up to 10 files until -->
 <!-- all files have been completed. -->
 <WatchFolder Name="LargeBatchTIFF Watch Folder" >
 <Settings>
 <!-- Folder options -->
 <add Name="Enabled" Value="True"/>
 <add Name="InputFolder"
 Value="C:\PEERNET\WatchFolders\LargeBatchTIFF\Input\"/>
 <add Name="SearchFilter" Value="*.*"/>
 <add Name="IncludeSubFolders" Value="True"/>
 <add Name="DeleteInputSubFolders" Value="True"/>
 <add Name="StagingFolder"
 Value="C:\PEERNET\WatchFolders\LargeBatchTIFF\Staging"/>
 <add Name="WorkingFolder"
 Value="C:\PEERNET\WatchFolders\LargeBatchTIFF\Working"/>
 <add Name="FailedFolder"
 Value="C:\PEERNET\WatchFolders\LargeBatchTIFF\Failed"/>
 <add Name="CompletedFolder"
 Value="C:\PEERNET\WatchFolders\LargeBatchTIFF\Completed"/>
 <add Name="OutputFolder"
 Value=":\PEERNET\WatchFolders\LargeBatchTIFF\Output"/>
 <add Name="PollingInterval" Value="15000"/>
 <add Name="DCOMComputerName" Value=""/>
 <add Name="TestMode" Value="false" />

 <!-- These settings control the how many files in the batch -->
 <!-- are picked up each time, 0 means no limit. -->
 <add Name="Polling.MaxFilesToProcessAtATime" Value="10" />
 <add Name="Polling.SynchronousFilePickup" Value="true" />

 <add Name="UseTimeDateSubFoldersInCompletedFolder" Value="false" />
 <add Name="UseTimeDateSubFoldersInFailedFolder" Value="false" />

 <add Name="Devmode settings;Resolution" Value="300"/>
 <add Name="Save;Output File Format" Value="TIFF Multipaged" />
 <!-- Replace the above with this to create serialized images. -->
 <!-- <add Name="Save;Output File Format" Value="TIFF Serialized" /> -->

 <add Name="Save;Append" Value="0"/>
 <add Name="Save;Color reduction" Value="Optimal"/>
 <add Name="Save;Dithering method" Value="Halftone"/>

 <!-- This creates file.ext.tif, change to 1 to create file.tif -->
 <add Name="Save;Remove filename extension" Value="1"/>

 <add Name="TIFF File Format;BW compression" Value="Group4"/>
 <add Name="TIFF File Format;Color compression" Value="LZW RGB0"/>
 <add Name="TIFF File Format;Indexed compression" Value="LZW"/>
 <add Name="TIFF File Format;Greyscale compression" Value="LZW"/>
 <add Name="JPEG File Format;Color compression" Value="Medium Quality"/>
 <add Name="JPEG File Format;Greyscale compression" Value="High Quality"/>

 </Settings>
 </WatchFolder>

</WatchFolders>

Document Conversion Service 3.0

231 Converting With PEERNET.ConvertUtility

Converting With PEERNET.ConvertUtility

Welcome to the PEERNET.ConvertUtility help. The table below outlines the different sections of this help
manual.

Topic Description

Getting Started Step-by step tutorials in this section explain how to call
the PEERNET.ConvertUtility from your own code, and
how to use the returned information to find the
converted files, information messages or error
messages.

Working With PEERNET.ConvertUtility This section covers the more advanced topics such as
passing custom settings and creating your own custom
conversion profiles.

Deploying Applications This sections lists the required PEERNET.ConvertUtility
files needed when deploying applications.

PEERNET.ConvertUtility Namespace This reference section contains detailed descriptions of
all classes in the PEERNET.ConvertUtility library.

232

Document Conversion Service 3.0

Converting With PEERNET.ConvertUtility

Requirements

Requirements

The supported development environments and platforms are listed below. Take note that these are
different from the platforms supported by Document Conversion Service.

Supported Platforms

Both 32-bit and 64-bit operating systems are supported.

· Microsoft® Windows Server 2022

· Microsoft® Windows 11

· Microsoft® Windows Server 2019

· Microsoft® Windows Server 2016

· Microsoft® Windows Server 2012 R2

· Microsoft® Windows Server 2012

· Microsoft® Windows Server 2008 R2

· Microsoft® Windows Server 2008

· Microsoft® Windows 10 (up to version 1809)

· Microsoft® Windows 8, 8.1

· Microsoft® Windows 7

· Microsoft® Windows Vista

· Microsoft® Windows XP SP3

Supported Development Environments

PEERNET.ConvertUtility requires Microsoft® .NET Framework 4.5 or higher to be installed. The following
development environments can be used:

· Visual Basic .NET 2010, 2012, 2013, 2015, 2017, 2022

· Visual C# .NET 2010, 2012, 2013, 2015, 2017, 2022

· PowerShell

Document Conversion Service 3.0

233 Converting With PEERNET.ConvertUtility

Getting Started

Getting Started

The tutorials in this section are designed to provide a quick introduction to the PEERNET.ConvertUtility
.NET library. If you are new to the Document Conversion Service, the quickest way to learn how to add file
conversion into your .NET application is to follow the tutorial in your language of choice.

The section Working With PEERNET.ConvertUtility provides information on the more advanced features
of the PEERNET.ConvertUtility library.

Starting with one of the following tutorials is recommended:

· C# Tutorial

· Visual Basic .NET Tutorial

· Using the Results Object

234

Document Conversion Service 3.0

Converting With PEERNET.ConvertUtility

Getting Started

C# Tutorial

This tutorial will show you how to add file conversion to your C#.NET application using
PEERNET.ConvertUtility. The tutorial creates a simple C# Windows forms application with a single button
that converts a file when pressed and displays the results in a list box when finished. It also assumes that
Document Conversion Service is installed on your local computer.

· Step 1: Creating a Simple Application

· Step 2: Adding the PEERNET.ConvertUtility Library

· Step 3: Converting a File

· Step 4: Displaying the Conversion Results

· Step 5: Testing the Application

1. Creating a Simple Application

In this first step we will create a simple C# forms application with a single button and a list box.

1. Start Visual Studio .NET and select New Project from the start page or File - New - Project...
from the menu.

2. Select the Visual C# Windows Forms Application template and target the .NET
Framework 4.

3. Enter a name and location for this sample and press OK.

4. Next, add two controls onto the new form.

a. From the toolbox, drag a button onto Form1 and change the text of the button to "Convert".

b. Go back to the toolbox and drag a listbox onto the form.

Document Conversion Service 3.0

235 Converting With PEERNET.ConvertUtility

Getting Started

c. Change the width of both the form and the listbox to be able to display more information in the
listbox.

2. Adding the PEERNET.ConvertUtility Library

In this section we will add PEERNET.ConvertUtility support to the project.

1. Right click References in the solution explorer and select Add Reference.

2. Click the Browse tab and add a reference to the PEERNET.ConvertUtility.dll into the project. It is
located in the \Samples\Redist folder under the Document Conversion Services installation
folder.

3. Right click on Form1 and open the source code view by selecting View Code.

4. Add the following statement to the top of the Form1.cs file.

using PEERNET.ConvertUtility;

3. Converting a File

Now we have all the pieces we need to convert a file and display the results into the listbox.

236

Document Conversion Service 3.0

Converting With PEERNET.ConvertUtility

Getting Started

1. On the design view of Form1, double click the button added above to create the Click event and
switch to code view.

2. In the button1_Click method, add the following code to call ConvertFile to convert a file to a 200dpi
TIFF image.

a. Replace the underlined arguments with your own input filename, output folder, and converted
filename.

b. The output folder must exist before calling ConvertFile.

c. The call to ConvertFile is a blocking call and will not return until the conversion is complete.
When it returns we then want to display the results of the conversion in the listbox.

d. A try-catch-finally block is in place so that, success or failure, the call to DisplayResultsItems
is always executed and the result of the conversion will always be displayed in the listbox.

private void button1_Click(object sender, EventArgs e)
{
 PNConversionItem resultItem = null;
 String strOutputFolder = @"C:\Test\Output";

 try {
 button1.Enabled = false;
 this.listBox1.Items.Clear();
 this.listBox1.Items.Add("Converting...");

 // Directory must exist
 if (!Directory.Exists(strOutputFolder))
 {
 Directory.CreateDirectory(strOutputFolder);
 }
 // This is the single call needed to convert a file
 resultItem = PNConverter.ConvertFile(
 @"C:\Test\File.pdf",
 strOutputFolder, // output folder
 @"ConvertedFromPDF", // converted file name
 true, // overwrite existing
 false, // do not remove file ext
 false, // do not create log
 "TIFF 200dpi OptimizedColor", // profile
 String.Empty,
 String.Empty,
 null, // no custom user settings
 String.Empty, // not using DCOM
 String.Empty, // use default working folder
 String.Empty // no custom log folder
);
 }
 catch (Exception ex) {
 this.listBox1.Items.Add(String.Format("An error occurred during conversion. {0}",
 ex.ToString()));
 }
 finally {
 button1.Enabled = true;
 DisplayResultsItems(resultItem);
 }
}

4. Displaying the Conversion Results

All of the conversion methods in PEERNET.ConvertUtility return a results item, or in the case of
converting a list or a folder of files, a list of results items.

Document Conversion Service 3.0

237 Converting With PEERNET.ConvertUtility

Getting Started

This item contains information about the original conversion request and the results of the conversion.
The results of the conversion can be a list of created files or a collection of error messages detailing
why the file was not converted.

1. Add the following method into Form1.cs. This method will display the name of the file we tried to
convert, and then will list the new file that was created. If the conversion failed, the error
messages are displayed instead.

private void DisplayResultsItems(PNConversionItem result)
{
 if (result != null) {
 // With single file conversion this will be a single item
 // The PNConversionResult object in each item contains the error and file list.
 // Failed items will have an error list > 0 and no output files.

 listBox1.Items.Add("Conversion Item: " + result.SourceFilePath);
 listBox1.Items.Add("===");

 if (result.HasErrors()) {
 if (result.ConversionResult.Errors.Count > 0) {
 listBox1.Items.Add("Errors occured during conversion: ");
 foreach (PNConversionResultError itemError in
 result.ConversionResult.Errors) {
 listBox1.Items.Add(itemError.Value);
 }
 }
 }
 else {
 if (result.ConversionResult.OutputFiles != null) {
 if (result.ConversionResult.OutputFiles.Count > 0) {
 listBox1.Items.Add("The following files where created: ");
 foreach (PNConversionResultOutputFile itemOutputFile in
 result.ConversionResult.OutputFiles) {
 listBox1.Items.Add(itemOutputFile.OutputFilePath);
 }
 }
 else {
 listBox1.Items.Add("No files were created.");
 }
 }
 }
 } // results not null
 else {
 listBox1.Items.Add("Conversion module did not run.");
 }
}

5. Testing the Application

To test the application, Document Conversion Service has to be running as PEERNET.ConvertUtility
communicates with Document Conversion Service to perform the file conversion.

1. From the system tray icon menu select Run Conversion Service to start the service. If this
menu item is disabled the service is already running.

238

Document Conversion Service 3.0

Converting With PEERNET.ConvertUtility

Getting Started

2. When the service has finished initializing, build and run your C# project.

3. Click on the button to convert your file. The listbox will display the message "Converting..." and
then the results of the conversion.

Document Conversion Service 3.0

239 Converting With PEERNET.ConvertUtility

Getting Started

Visual Basic .NET Tutorial

This tutorial will show you how to add file conversion to your Visual Basic .NET application using
PEERNET.ConvertUtility. The tutorial creates a simple Visual Basic Windows forms application with a
single button that converts a file when pressed and displays the results in a list box when finished. It also
assumes that Document Conversion Service is installed on your local computer.

· Step 1: Creating a Simple Application

· Step 2: Adding the PEERNET.ConvertUtility Library

· Step 3: Converting a File

· Step 4: Displaying the Conversion Results

· Step 5: Testing the Application

1. Creating a Simple Application

In this first step we will create a simple Visual Basic .NET forms application with a single button and a
list box.

1. Start Visual Studio .NET and select New Project from the start page or File - New - Project...
from the menu.

2. Select the Visual Basic Windows Forms Application template and target the .NET
Framework 4.

3. Enter a name and location for this sample and press OK.

4. Next, add two controls onto the new form.

a. From the toolbox, drag a button onto Form1 and change the text of the button to "Convert".

b. Go back to the toolbox and drag a listbox onto the form.

240

Document Conversion Service 3.0

Converting With PEERNET.ConvertUtility

Getting Started

c. Change the width of both the form and the listbox to be able to display more information in the
listbox.

2. Adding the PEERNET.ConvertUtility Library

In this section we will add PEERNET.ConvertUtility support to the project.

1. In the solution explorer, right click the project and select Add Reference.

2. Click the Browse tab and add a reference to the PEERNET.ConvertUtility.dll into the project. It is
located in the \Samples\Redist folder under the Document Conversion Services installation
folder.

3. Right click on Form1 and open the source code view by selecting View Code.

4. Add the following statement to the top of the Form1.vb file.

Imports PEERNET.ConvertUtility

3. Converting a File

Now we have all the pieces we need to convert a file and display the results into the listbox.

Document Conversion Service 3.0

241 Converting With PEERNET.ConvertUtility

Getting Started

1. On the design view of Form1, double click the button added above to create the Click event and
switch to code view.

2. In the Button1_Click method, add the following code to call ConvertFile to convert a file to a
200dpi TIFF image.

a. Replace the underlined arguments with your own input filename, output folder, and converted
filename.

b. The output folder must exist before calling ConvertFile.

c. The call to ConvertFile is a blocking call and will not return until the conversion is complete.
When it returns we then want to display the results of the conversion in the listbox.

d. A Try-Catch-Finally block is in place so that, success or failure, the call to DisplayResultsItems
is always executed and the result of the conversion will always be displayed in the listbox.

Private Sub Button1_Click(sender As System.Object, _
 e As System.EventArgs) _
 Handles Button1.Click

 Dim resultItem As PNConversionItem
 Dim strOutputFolder As String

 resultItem = Nothing
 strOutputFolder = "C:\Test\Output"

 Try
 Button1.Enabled = False
 ListBox1.Items.Clear()
 ListBox1.Items.Add("Converting...")

 ' Directory must exist
 If Not Directory.Exists(strOutputFolder) Then
 Directory.CreateDirectory(strOutputFolder)
 End If

 ' This is the single call needed to convert a file
 resultItem = PNConverter.ConvertFile(
 "C:\Test\File.pdf", _
 "C:\Test\Output", _
 "ConvertedFromPDF", _
 True, _
 False, _
 False, _
 "TIFF 200dpi OptimizedColor", _
 String.Empty, _
 String.Empty, _
 Nothing, _
 String.Empty, _
 String.Empty, _
 String.Empty)

 Catch ex As Exception
 ListBox1.Items.Add(String.Format("An error occurred during conversion. {0}", _
 ex.ToString()))
 Finally
 Button1.Enabled = True
 DisplayResultsItems(resultItem)
 End Try
End Sub

4. Displaying the Conversion Results

All of the conversion methods in PEERNET.ConvertUtility return a results item, or in the case of
converting a list or a folder of files, a list of results items.

242

Document Conversion Service 3.0

Converting With PEERNET.ConvertUtility

Getting Started

This item contains information about the original conversion request and the results of the conversion.
The results of the conversion can be a list of created files or a collection of error messages detailing
why the file was not converted.

1. Add the following method into Form1.vb. This method will display the name of the file we tried to
convert, and then will list the new file that was created. If the conversion failed, the error
messages are displayed instead.

 Private Sub DisplayResultsItems(result As PNConversionItem)

 If Not result Is Nothing Then

 ' With single file conversion this will be a single item,
 ' The PNConversionResult object in each item contains the error and file list.
 ' Failed items will have an error list > 0 and no output files.

 ListBox1.Items.Add("Conversion Item: " & result.SourceFilePath)
 ListBox1.Items.Add("===")

 If (result.HasErrors()) Then
 If (Not result.ConversionResult.Errors Is Nothing And _
 result.ConversionResult.Errors.Count > 0) Then
 ListBox1.Items.Add("Errors occured during conversion: ")
 For Each itemError As PNConversionResultError In _
 result.ConversionResult.Errors
 ListBox1.Items.Add(itemError.Value)
 Next
 End If
 Else

 If (Not IsNothing(result.ConversionResult.OutputFiles)) Then
 If (result.ConversionResult.OutputFiles.Count > 0) Then
 ListBox1.Items.Add("The following files where created: ")
 For Each itemOutputFile As PNConversionResultOutputFile In _
 result.ConversionResult.OutputFiles
 ListBox1.Items.Add(itemOutputFile.OutputFilePath)
 Next
 Else
 ListBox1.Items.Add("No files were created.")
 End If
 End If
 End If
 Else
 ListBox1.Items.Add("Conversion module did not run.")
 End If
 End Sub

5. Testing the Application

To test the application, Document Conversion Service has to be running as PEERNET.ConvertUtility
communicates with Document Conversion Service to perform the file conversion.

1. From the system tray icon menu select Run Conversion Service to start the service. If this
menu item is disabled the service is already running.

Document Conversion Service 3.0

243 Converting With PEERNET.ConvertUtility

Getting Started

2. When the service has finished initializing, build and run your VB.NET project.

3. Click on the button to convert your file. The listbox will display the message "Converting..." and
then the results of the conversion.

244

Document Conversion Service 3.0

Converting With PEERNET.ConvertUtility

Getting Started

Using the Results Object

The convert method ConvertFile returns a PNConversionItem object that describes the original conversion
request and contains an internal object, PNConversionResult which contains the results of the conversion
request.

The methods ConvertFileList and ConvertFolder, which convert groups of files, return a list of
PNConversionItem objects, one for every file found to convert.

It is this object that is queried to find out the following:

· The status of the conversion - success or failure?

· If the conversion failed, what errors occurred?

· What files were created?

Getting the Conversion Status and Error Information

To find out the status of a conversion you can call either one of two methods: HasErrors or
GetConversionStatus.

HasErrors returns True if there were any errors during conversion for this item. All error message are
available through the Errors collection in the ConversionResult property.

The method GetConversionStatus returns a PNConvertResultStatus conversion status for this item.

private void ReportStatusAndErrors(PNConversionItem result)
{
 if (result != null) {
 String status = result.GetConversionStatus();
 listBox1.Items.Add("Status:" + status););

 if (result.HasErrors()) {
 if (result.ConversionResult.Errors.Count > 0) {
 listBox1.Items.Add("Errors occured during conversion: ");
 foreach (PNConversionResultError itemError in
 result.ConversionResult.Errors) {
 listBox1.Items.Add(itemError.Value);
 }
 }
 }
 } // results not null
 else {
 listBox1.Items.Add("Conversion module did not run.");
 }
}

What Files Were Created?

The PNConversionResult object in each PNConversionItem object contains a collection listing all of
the files created by this conversion request. The ConvertFile method returns a single
PNConversionItem while the methods ConvertFileList and ConvertFolder will return a list of
PNConversionItem objects, one for each file in the list or folder that was converted.

Document Conversion Service 3.0

245 Converting With PEERNET.ConvertUtility

Getting Started

private void ListCreatedFiles(PNConversionItem result)
{
 if (result != null) {
 listBox1.Items.Add("Conversion Item: " + result.SourceFilePath);
 listBox1.Items.Add("===");

 if (! result.HasErrors()) {
 if (result.ConversionResult.OutputFiles != null) {
 if (result.ConversionResult.OutputFiles.Count > 0) {
 listBox1.Items.Add("The following files where created: ");
 foreach (PNConversionResultOutputFile itemOutputFile in
 result.ConversionResult.OutputFiles) {
 listBox1.Items.Add(itemOutputFile.OutputFilePath);
 }
 }
 else {
 listBox1.Items.Add("No files were created.");
 }
 }
 }
 }
}

246

Document Conversion Service 3.0

Converting With PEERNET.ConvertUtility

Working With PEERNET.ConvertUtility

Working With PEERNET.ConvertUtility

This section contains information on more advanced topics such as using custom conversion settings,
creating your own profiles and controlling parallel document conversion.

If you are new to the PEERNET.ConvertUtility you should start with the tutorials in the Getting Started
section.

· Passing Custom Conversion Settings

· Converting a Folder of Files

· Converting a List of Files

· Combining a List of Files into a Single File

· Combining a Folder of Files into a Sngle File

· Combining Select Pages Of Each File

· Converting Files with Long Path Names

· Controlling Parallel Document Conversion

· Waiting for Document Conversion Service to be Ready to Convert

· Creating and Customizing Profiles

Document Conversion Service 3.0

247 Converting With PEERNET.ConvertUtility

Working With PEERNET.ConvertUtility

Passing Custom Conversion Settings

When calling the Convert methods from the PEERNET.ConvertUtility library, you have many ways of
configuring the output files created.

The easiest method is to pass the name of one of the profiles included with Document Conversion Service
into the convert method. You can also pass the full path to a profile on disk that you have created yourself.

A profile is just an XML file that contains the list of conversion settings settings as name/value pairs. Using
a profile has the advantage of allowing you to change the conversion settings in the profile on disk without
having to recompile your code.

The other two methods are as follows:

· Pass Additional Settings with User Settings

· Passing a Custom List of Conversion Settings

Pass Additional Settings with User Settings

If you are using a profile to specify your conversion settings you can dynamically modify the profile
settings without changing the profile on disk by passing a list of user settings to the convert methods.
Settings provided in this list will override matching settings in the profile while new settings will be
added to the list of conversion settings for this call only.

This C# code sample demonstrates creating a list of two user settings and passing it to the
ConvertFile method. The first additional setting will cause serialized TIFF images to be created instead
of multipaged. The second setting is used to control how the Word document is printed; in this case
we want to see any document and markup that occurred on the document.

IDictionary<String, String> UserSettings = new Dictionary<String, String>();
PNConversionItem resultItem = null;

UserSettings.Add("Save;Output File Format", "TIFF Serialized");
UserSettings.Add("Microsoft.Word.Document.PrintOut.Item", "DocumentAndMarkup");

// conversion results returned in result item, use it to find files created or errors
resultItem = PNConverter.ConvertFile(@"C:\Input\Memo.doc",
 @"C:\Output\",
 "ConvertedMemo",
 true, // overwrite existing
 false, // remove file extension
 false, // create log file
 "TIFF 200dpi Monochrome",
 settings,
 String.Empty,
 String.Empty,
 UserSettings, // custom settings
 String.Empty, // remote computer
 String.Empty, // use default working folder
 String.Empty);

Passing a Custom List of Conversion Settings

You can also configure the output files by passing in a list of conversion settings that you define before
you call the convert method. Conversion settings are name/value pairs of settings that define the
output files. The same name/value pairs that you would use when creating a profile on disk are used
when building these lists of settings.

248

Document Conversion Service 3.0

Converting With PEERNET.ConvertUtility

Working With PEERNET.ConvertUtility

These settings are commonly used to control what type of output file to create - TIFF, PDF, JPEG, or
others, the resolution of the created images, or single-paged or multi-paged output.

Additionally, you can control some aspects of the conversion modules such as having Word
documents print with tracking and revisions visible, or having all PowerPoint slides printed with the
notes.

The C# code sample below demonstrates calling ConvertFile with a custom list of conversion settings
to create a PDF file. The input file C:\Input\Memo.doc will be converted to a PDF file and saved as C:
\Output\ConvertedMemo.pdf.

IDictionary<String, String> settings = new Dictionary<String, String>();
PNConversionItem resultItem = null;

settings.Add("Devmode settings;Resolution", "300");
settings.Add("Save;Output File Format", "Adobe PDF Multipaged");
settings.Add("Save;Append", "0");
settings.Add("Save;Color reduction", "Optimal");
settings.Add("Save;Dithering method", "Halftone");
settings.Add("PDF File Format;PDF Standard", "None");
settings.Add("PDF File Format;Content encoding", "LZW");
settings.Add("PDF File Format;Use ASCII", "0");
settings.Add("PDF File Format;Color compression", "LZW");
settings.Add("PDF File Format;Greyscale compression", "LZW");
settings.Add("PDF File Format;Indexed compression", "LZW");
settings.Add("PDF File Format;BW compression", "Group4");
settings.Add("PDF Security;Use Security", "1");
settings.Add("PDF Security;Encrypt Level", "1");
settings.Add("PDF Security;Can Copy", "1");
settings.Add("PDF Security;Can Print", "1");
settings.Add("PDF Security;Can Change Doc", "0");
settings.Add("PDF Security;Can ChangeOther", "0"):
settings.Add("PDF Security;User Pswd On", "0");
settings.Add("PDF Security;Owner Pswd On", "0");

// conversion results returned in result item, use it to find files created or errors
resultItem = PNConverter.ConvertFile(@"C:\Input\Memo.doc",
 @"C:\Output\",
 "ConvertedMemo",
 true, // overwrite existing
 false, // remove file extension
 false, // create log file
 settings,
 String.Empty,
 String.Empty,
 null, // no extra settings
 String.Empty, // remote computer
 String.Empty, // use default working folder
 String.Empty);

Document Conversion Service 3.0

249 Converting With PEERNET.ConvertUtility

Working With PEERNET.ConvertUtility

Converting a Folder of Files

The ConvertFolder method is used to convert files in the given folder and optionally any subfolders as well.
As with the ConvertFile method, the conversion settings are passed as a profile, or through a custom list
of settings. When converting a folder of files, all files are converted with the same conversion settings.

If an output location is provided the directory structure, including subfolders, will be maintained in the new
location. This directory must exist before the call to ConvertFolder is made.

If an output location is not provided a new folder named .converted is created in the same location as the
source file and all output files are saved there.

Filtering Files in the Folder

You can use the Filter and the ExcludeFilter arguments to specify what files in the folder you want to
convert. The Filter is always applied to the directory contents first, then the ExcudeFilter is applied to
that list of files to remove the unwanted files.

Hidden and system files are ignored, and the search pattern filters files based on a regular expression
match of the long name of a file. The Filter defaults to all files in the folder (*.*) if String.Empty or null
are passed. ExcludeFilter is ignored when String.Empty or null is passed.

Multiple filters can be combined using the pipe (|) character, such as *.doc|*.pdf to process only Word
and PDF files. The table below lists some examples of filtering directory contents.

Filter Exclude Filter Action

*.pdf String.Empty Process only PDF documents.

. *.tif|*.jpg Process all documents except TIFF and JPEG
images.

.doc|.docx|*.txt Draft_* Process all Word and Text documents except
those starting with Draft_.

Sorting the Files for Pickup

Starting with Document Conversion Service 3.0.029, this method now includes the ability to order the
files by name, date created or date modified when picking up files from the Input folder.

Configuring the Sort Mode and Order

Sort order defaults to name and ascending when picking up files. Files in the root of the input folder
are picked up and sorted first. If sub folders are enabled, they are searched in alphabetical order. Any
files in each sub folder are then sorted and returned. Uses the PNFileSortMode enumeration.

Note: Any sorting options applied only control the order in which the files are picked up from the
directory. Sorting does not guarantee the order the files are processed in, only that files sorted to the
top of the list are submitted for conversion first. A smaller file further down the list might finish before a
larger file that was first in the list.

There are four sorting modes that can be used:

o None - No ordering is used. Files are returned in the order they were given to us from the
underlying file system.

250

Document Conversion Service 3.0

Converting With PEERNET.ConvertUtility

Working With PEERNET.ConvertUtility

o Name - This is the default if the setting is not found or the value is incorrect. Files are sorted
based on the full path name of the source file in the input folder.

o DateCreated - Files are sorted based on their creation date. For watch folders where files are
dropped, a file can be moved or copied into the folder. If the files are moved into the Input folder
they will retain their original created date. Copying a file into the Input folder wil set the created
date to the time of the copy.

o DateModified - Files are sorted based on when they were last modified on the computer.

The order of the files is either Ascending or Descending. Uses the PNFileSortOrder enumeration.

o Ascending - sorted the files from low to high: 0-9, A-Z.

o Descending - sorts the files from high to low: Z-A, 9-0.

Converting a Folder of Files

The code sample below will convert all files in the folder C:\Test\InputFiles\ except TIFF, JPEG and
BMP images. Any subfolders will also be searched for files to convert. A sort order of DateCreated is
set, meaning files created first will be submitted for processing first. This does not control the order in
which the files are completed.

IList<PNConversionItem> results = new List<PNConversionItem>();
String strOutputFolder = @"C:\Test\Output";

// Directory must exist
if (!Directory.Exists(strOutputFolder))
{
 Directory.CreateDirectory(strOutputFolder);
}

// Convert the folder
results = PNConverter.ConvertFolder(@"C:\Test\InputFiles",
 true, // include subfolders
 "*.*", // filter
 "*.tif|*.jpg|*.bmp", // exclude filter
 strOutputFolder, // output folder
 true, // overwrite existing
 false, // remove file ext
 false, // create log
 "TIFF 200dpi OptimizedColor", // settings
 String.Empty, // extensison profile
 String.Empty, // MIME profile
 null, // User settings
 String.Empty, // not using remote conversion (DCOM)
 String.Empty, // use default working folder
 String.Empty,
 PNFileSortMode.DateCreated, // sort by created date
 PNFileSortOrder.Asccending); // A-Z, 0-9

Document Conversion Service 3.0

251 Converting With PEERNET.ConvertUtility

Working With PEERNET.ConvertUtility

The created files, in this case TIFF images, will be placed in the output folder C:\Test\Output and the
directory structure maintained. The name of the original file, including the extension, is used as the
base name for the new file. Files matching the ExcludeFilter were not converted.

Reading the Results Collection

When converting a folder of files a list of PNConversionItem objects will be returned, one for every file
found to convert. Each PNConversionItem object contains information about the original conversion
request and an internal PNConversionResult object that lists the results of the conversion. The results
of the conversion can be a list of created files or a collection of error messages detailing why the file
was not converted.

This code sample traverses the returns results from the above folder conversion and lists the files
created.

if (results != null)
{
 int idx = 0;
 foreach (PNConversionItem item in results)
 {
 idx++;
 Console.WriteLine("*******************************");
 Console.WriteLine(String.Format("* Item {0} *", idx));
 Console.WriteLine("*******************************");

 if (item != null)
 {
 Console.WriteLine("Item: " + item.SourceFilePath);
 Console.WriteLine(" " + item.OutputDirectory);
 Console.WriteLine(" " + item.OutputBaseName);

 if (item.HasErrors() == false)
 {

 foreach (PNConversionResultOutputFile outputfile in
 item.ConversionResult.OutputFiles)
 {
 Console.WriteLine(" Converted to: " + outputfile.OutputFilePath);
 }
 }
 else
 {
 foreach (PNConversionResultError errorItem in
 item.ConversionResult.Errors)
 {
 Console.WriteLine(" Error: " + errorItem.Value);
 }
 }

252

Document Conversion Service 3.0

Converting With PEERNET.ConvertUtility

Working With PEERNET.ConvertUtility

 }
 }
}

The console output from the above code is shown below.

Document Conversion Service 3.0

253 Converting With PEERNET.ConvertUtility

Working With PEERNET.ConvertUtility

Converting a List of Files

The ConvertFileList method allows you to convert a list of files from various locations in a single call. Each
file in the list can optionally have different conversion settings and different output locations. This is
different from ConvertFolder where all files are converted with the same settings.

Building the List of Files

The list of files is passed to the ConvertFileList method as a collection of PNConvertFileInfo objects.

The PNConvertFileInfo class requires the path to the source file and two optional arguments - the path
to the output folder and a list of additional conversion settings to use when the source file is converted.

If an output folder is specified in the, this folder must exist before calling the conversion method. If this
path is left empty the output folder specified in the ConvertFileList call is used. If that folder path is
also empty, the file will be created in the same location as the source file.

The settings provided in the PNConvertFileInfo class are used in addition to the conversion settings
passed to the ConvertFileList method either as a profile or through the settings list parameter.

A sample list of files to convert is created below. This list will output each file into its own folder. The
second file in the list also includes additional settings to use when converting the file.

IList<PNConvertFileInfo> fileList = new List<PNConvertFileInfo>();
IList<PNSetting> filesettings = new List<PNSetting>();

// This file uses only the conversion settings from the profile
fileList.Add(new PNConvertFileInfo(@"C:\Test\InputFiles\File1.pdf",
 @"C:\Test\Output\ConvertedPDF\",
 null));

// This file also changes the conversion settings to 300 dpi and
// causes the Word converter to print markup.
filesettings.Add(new PNSetting("Devmode settings;Resolution", "300")); // driver setting
filesettings.Add(new PNSetting("Microsoft.Word.Document.PrintOut.Item", // converter setting
 "DocumentAndMarkup"));
fileList.Add(new PNConvertFileInfo(@"C:\Test\InputFiles\File1.doc",
 @"C:\Test\Output\ConvertedDocs\",
 filesettings));

Converting the List of Files

The code sample below uses the file list created above. It first checks the that all of the output paths
exist and creates them if necessary, then calls ConvertFileList to convert all files in the list and place
the created files in the output folder specified.

The first file in the list will use only the conversion settings from the profile TIFF 200dpi
OptimizedColor.

The second file has additional settings: the first to change the image resolution from 200 dpi to 300
dpi, and the second setting to tell the Word converter.to have any markup (comments, review) visible
in the converted file.

IList<PNConversionItem> results = new List<PNConversionItem>();

254

Document Conversion Service 3.0

Converting With PEERNET.ConvertUtility

Working With PEERNET.ConvertUtility

// Test output, directories need to be created
foreach (PNConvertFileInfo info in fileList)
{
 if (!String.IsNullOrEmpty(info.OutputPath) &&
 !Directory.Exists(info.OutputPath))
 {
 Directory.CreateDirectory(info.OutputPath);
 }
}

results = PNConverter.ConvertFileList(fileList,
 String.Empty, // no output folder
 String.Empty, // no converted file name
 false, // do not overwrite
 false, // remove file ext
 false, // create log
 "TIFF 200dpi OptimizedColor", // settings
 String.Empty, // extensison profile
 String.Empty, // MIME profile
 null, // User settings
 String.Empty, // not using remote conversion (DCOM)
 String.Empty, // use default working folder
 String.Empty);

Document Conversion Service 3.0

255 Converting With PEERNET.ConvertUtility

Working With PEERNET.ConvertUtility

The created files, in this case TIFF images, will be placed in the specified output folder for each file.
The name of the original file, including the extension, is used as the base name for the new file.

Reading the Results Collection

When converting a list of files, the results are returns as a collection of PNConversionItem object, one
for every file sent to be converted. Each PNConversionItem object contains information about the
original conversion request and an internal PNConversionResult object that lists the results of the
conversion. The results of the conversion can be a list of created files or a collection of error
messages detailing why the file was not converted.

This code sample traverses the returns results from the above conversion and lists the files created.

if (results != null)
{
 int idx = 0;
 foreach (PNConversionItem item in results)
 {
 idx++;
 Console.WriteLine("*******************************");
 Console.WriteLine(String.Format("* Item {0} *", idx));
 Console.WriteLine("*******************************");

256

Document Conversion Service 3.0

Converting With PEERNET.ConvertUtility

Working With PEERNET.ConvertUtility

 if (item != null)
 {
 Console.WriteLine("Item: " + item.SourceFilePath);
 Console.WriteLine(" " + item.OutputDirectory);
 Console.WriteLine(" " + item.OutputBaseName);

 if (item.HasErrors() == false)
 {

 foreach (PNConversionResultOutputFile outputfile in
 item.ConversionResult.OutputFiles)
 {
 Console.WriteLine(" Converted to: " + outputfile.OutputFilePath);
 }
 }
 else
 {
 foreach (PNConversionResultError errorItem in
 item.ConversionResult.Errors)
 {
 Console.WriteLine(" Error: " + errorItem.Value);
 }
 }
 }
 }
}

The console output from the above code is shown below.

Document Conversion Service 3.0

257 Converting With PEERNET.ConvertUtility

Working With PEERNET.ConvertUtility

Combining a List of Files

The CombineFiles method allows you to combine (append) a list of files from various locations into a
single output file, or a serialized sequence of single page output files in a single call. To combine files with
different setting per file, see Combining Select Pages Of Each File.

Building the List of Files

The list of files is passed to the CombineFiles method is a simple IList collection of file paths. The path
to each file must be a fully qualified path name, relative paths are not accepted.

The files are converted in the order in which they are added to the list. A sample list of files to convert
is created below.

IList<String> fileList = new List<String>();

filelist.Add(@"C:\Test\PDF\InputFile1.pdf");
filelist.Add(@"C:\Test\DOC\InputFile2.doc");
filelist.Add(@"C:\Test\XLS\InputFile3.xls");

Combining the List of Files

The code sample below uses the file list created above to append all three files into a single
multipaged TIFF image. When combining files, the output directory and final output file name must be
provided and the directory must exist before the call is made. The code calls CombineFiles to combine
all files in the list and place the final output file in the output folder specified.

The combined file will be created using the conversion settings from the profile TIFF 200dpi
OptimizedColor. You can change this to use any profile you require.

PNCombineItem resultsItem = null;
String outputDir = @"C:\Test\CombineOutput";
String outputName = "CombinedInput";

resultsItem =
 PNConverter.CombineFiles(fileList, // files collection
 outputDir, // output folder
 baseName, // name of combined file
 false, // overwrite
 false, // create results log
 "TIFF 200dpi OptimizedColor", // profile
 String.Empty, // File-ext
 String.Empty, // MIME
 null, // user settings
 String.Empty, // not using remote conversion (DCOM)
 String.Empty, // use default working folder
 String.Empty // Log path
);

The created file, in this case a multipaged TIFF image, will be placed in the specified output folder C:
\Test\CombineOutput and named CombinedInput.tif

258

Document Conversion Service 3.0

Converting With PEERNET.ConvertUtility

Working With PEERNET.ConvertUtility

Reading the Results

When combining a list of files, a PNCombineItem object is returned. This object contains information
about the original combine request, the input files used, a list of the output files created and a
collection of PNConversionResult objects that lists the results of the conversion for each input file. The
results of the conversion can be a list of created files or a collection of error messages detailing why
the files were not combined.

This code sample traverses the returns results from the above combine and lists the input files used
and the files created.

if (resultsItem != null)
{
 Console.WriteLine("*******************************");
 Console.WriteLine("* Combined ITEM *");
 Console.WriteLine("*******************************");
 Console.WriteLine("BaseName: " + resultsItem.OutputBaseName);
 Console.WriteLine("Directory: " + resultsItem.OutputDirectory);
 Console.WriteLine("Input Files:");

Document Conversion Service 3.0

259 Converting With PEERNET.ConvertUtility

Working With PEERNET.ConvertUtility

 foreach (String inputFile in resultsItem.InputFiles)
 {
 Console.WriteLine(" " + inputFile);
 }

 Console.WriteLine("Combined Output:");
 if (resultsItem.CombinedOutputFileList.Count == 0)
 {
 Console.WriteLine(" None");
 }
 foreach (String combinedFile in resultsItem.CombinedOutputFileList)
 {
 Console.WriteLine(" " + combinedFile);
 }

 if (resultsItem.HasErrors() == true)
 {
 foreach (PNConversionResultError errorItem in resultsItem.Errors)
 {
 Console.WriteLine(" Error: " + errorItem.Value);
 }
 }
}

The console output from the above code is shown below.

260

Document Conversion Service 3.0

Converting With PEERNET.ConvertUtility

Working With PEERNET.ConvertUtility

Serialized Results

The sample code above used the profile TIFF 200dpi OptimizedColor which created a single,
multipaged output file. You can also combine multiple files into a serialized sequence of files. For
instance, JPEG images are a single page image format and using the profile JPEG 300dpi Color will
create a serialized sequence of files, one JPEG image for each page of each file.

Document Conversion Service 3.0

261 Converting With PEERNET.ConvertUtility

Working With PEERNET.ConvertUtility

Combining a Folder of Files

The CombineFolder method allows you to combine (append) the files in the given folder and optionally any
subfolders as well, into a single output file, or a serialized sequence of single page output files.

The conversion settings are passed as a profile, or through a custom list of settings. When converting a
folder of files, all files are converted with the same conversion settings. To combine files with different
setting per file, see Combining Select Pages Of Each File.

Filtering Files in the Folder

You can use the Filter and the ExcludeFilter arguments to specify which files in the folder you want to
convert. The Filter is always applied to the directory contents first, then the ExcudeFilter is applied to
that list of files to remove the unwanted files.

Hidden and system files are ignored, and the search pattern filters files based on a regular expression
match of the long name of a file. The Filter defaults to all files in the folder (*.*) if String.Empty or null
are passed. ExcludeFilter is ignored when String.Empty or null is passed.

Multiple filters can be combined using the pipe (|) character, such as *.doc|*.pdf to process only Word
and PDF files. The table below lists some examples of filtering directory contents.

Filter Exclude Filter Action

*.pdf String.Empty Process only PDF documents.

. *.tif|*.jpg Process all documents except TIFF and JPEG
images.

.doc|.docx|*.txt Draft_* Process all Word and Text documents except
those starting with Draft_.

Sorting the Files for Pickup

Starting with Document Conversion Service 3.0.029, this method now includes the ability to order the
files by name, date created or date modified when picking up files from the Input folder.

Configuring the Sort Mode and Order

Sort order defaults to name and ascending when picking up files. Files in the root of the input folder
are picked up and sorted first. If sub folders are enabled, they are searched in alphabetical order. Any
files in each sub folder are then sorted and returned. Uses the PNFileSortMode enumeration.

There are four sorting modes that can be used:

o None - No ordering is used. Files are returned in the order they were given to us from the
underlying file system.

o Name - This is the default if the setting is not found or the value is incorrect. Files are sorted
based on the full path name of the source file in the input folder.

o DateCreated - Files are sorted based on their creation date. For watch folders where files are
dropped, a file can be moved or copied into the folder. If the files are moved into the Input folder
they will retain their original created date. Copying a file into the Input folder wil set the created
date to the time of the copy.

o DateModified - Files are sorted based on when they were last modified on the computer.

262

Document Conversion Service 3.0

Converting With PEERNET.ConvertUtility

Working With PEERNET.ConvertUtility

The order of the files is either Ascending or Descending. Uses the PNFileSortOrder enumeration.

o Ascending - sorted the files from low to high: 0-9, A-Z.

o Descending - sorts the files from high to low: Z-A, 9-0.

Combining a Folder of Files

The code sample below will convert all files except TIFF, JPEG and BMP images from the folder C:
\Test\Input\. Any subfolders are also be searched for files to convert.

The combined file will be created using the conversion settings from the profile PDF 200dpi
OptimizedColor. You can change this to use any profile you require.

A sort order of DateCreated is set, meaning files created first will be submitted for processing first.
This will determine the order of the files and pages in the combined file at the end.

PNCombineItem resultsItem = null;
String inputDir = @"C:\Test\Input";
String outputDir = @"C:\Test\CombinedOutput";
String outputName = "CombinedInput";

// Directory must exist
if (!Directory.Exists(outputDir))
{
 Directory.CreateDirectory(outputDir);
}

resultsItem =
 PNConverter.CombineFolder(inputDir, // folder of files
 true, // include subfolders
 "*.*", // filter
 "*.tif|*.jpg|*.bmp", // exclude filter
 outputDir, // output folder
 baseName, // name of combined file
 false, // overwrite
 false, // create results log
 "PDF 200dpi OptimizedColor", // profile
 String.Empty, // File-ext
 String.Empty, // MIME
 null, // user settings
 String.Empty, // not using remote conversion (DCOM)
 String.Empty, // use default working folder
 String.Empty // Log path
 PNFileSortMode.DateCreated, // sort by created date
 PNFileSortOrder.Asccending); // A-Z, 0-9
);

The created file, in this case a multipaged PDF document, will be placed in the specified output folder
C:\Test\CombinedOutput and named CombinedInput.pdf. Files matching the ExcludeFilter (*.tif, *.jpg)
were not converted.

Document Conversion Service 3.0

263 Converting With PEERNET.ConvertUtility

Working With PEERNET.ConvertUtility

Reading the Results

When combining a folder of files, a PNCombineItem object is returned. This object contains
information about the original combine request, the files found to be converted, list of the output files
created and a collection of PNConversionResult objects that lists the results of the conversion for
each input file. The results of the conversion can be a list of created files or a collection of error
messages detailing why the files were not combined.

This code sample traverses the returns results from the above combine and lists the input files used
and the files created.

if (resultsItem != null)
{
 int idx = 0;

264

Document Conversion Service 3.0

Converting With PEERNET.ConvertUtility

Working With PEERNET.ConvertUtility

 Console.WriteLine("*******************************");
 Console.WriteLine("* Combined ITEM *");
 Console.WriteLine("*******************************");
 Console.WriteLine("BaseName: " + resultsItem.OutputBaseName);
 Console.WriteLine("Directory: " + resultsItem.OutputDirectory);
 Console.WriteLine("Input Files:");

 foreach (String inputFile in resultsItem.InputFiles)
 {
 Console.WriteLine(" " + inputFile);
 }

 Console.WriteLine("Combined Output:");
 if (resultsItem.CombinedOutputFileList.Count == 0)
 {
 Console.WriteLine(" None");
 }
 foreach (String combinedFile in resultsItem.CombinedOutputFileList)
 {
 Console.WriteLine(" " + combinedFile);
 }

 if (resultsItem.HasErrors() == true)
 {
 foreach (PNConversionResultError errorItem in resultsItem.Errors)
 {
 Console.WriteLine(" Error: " + errorItem.Value);
 }
 }
 else
 {
 foreach (PNConversionItem item in results)
 {
 idx++;
 Console.WriteLine("*******************************");
 Console.WriteLine(String.Format("* Item {0} *", idx));
 Console.WriteLine("*******************************");

 if (item != null)
 {
 Console.WriteLine("Item: " + item.SourceFilePath);
 Console.WriteLine("OutputDir: " + item.OutputDirectory
 Console.WriteLine("BaseName: " + item.OutputBaseName);

 if (item.HasErrors() == false)
 {
 foreach (PNConversionResultOutputFile outputfile in
 item.ConversionResult.OutputFiles)
 {
 Console.WriteLine(" Converted to: " + outputfile.OutputFilePath);
 }
 }
 else
 {
 foreach (PNConversionResultError errorItem in
 item.ConversionResult.Errors)
 {
 Console.WriteLine(" Error: " + errorItem.Value);
 }
 }
 }
 }
 }
}

Document Conversion Service 3.0

265 Converting With PEERNET.ConvertUtility

Working With PEERNET.ConvertUtility

The console output from the above code is shown below.

266

Document Conversion Service 3.0

Converting With PEERNET.ConvertUtility

Working With PEERNET.ConvertUtility

Combining Select Pages Of Each File

The CombineFiles method also allows you to combine (append) a list of files, each with their own settings,
into a single output file, or a serialized sequence of single page output files in a single call. A common use
of this is to print only select pages, or all pages, from each file to build the resulting file.

Building the List of Files

To allow each file to have their own settings, the list of files passed to the CombineFiles method needs
to be a an IList collection of PNConvertFileInfo objects. The PNConvertFileInfo object contains a list of
settings that can be applied instead or in addition to the profile settings used when combining.

Only the following converter settings are valid as settings when combining files:

· General Converter Options
· Endorsement Options
· Word Converter Options
· Excel Converter Options
· PowerPoint Converter Options
· Adobe Reader Options
· Internet Explorer Options
· Ghostscript Converter Options
· Image Converter Options
· OutsideIn AX Options

The path to each file must be a fully qualified path name, relative paths are not accepted. When
combining files, the the OutputFolder property on the PNConvertFileInfo object is ignored.

The files are converted in the order in which they are added to the list. A sample list of files to combine
is created below; the resulting file will contain all of the pages of the first file, and only the first three
pages of the second file.

IList<PNConvertFileInfo> fileInfoList = new List<PNConvertFileInfo>();
IList<PNSetting> filesettings = new List<PNSetting>();

// This file will print all pages and uses only the conversion
// settings from the profile - we aren't passing any additional settings.
fileInfoList.Add(new PNConvertFileInfo(@"C:\Test\InputFiles\File1.pdf",
 String.Empty,
 null));

// This file only prints the first 3 pages, but also shows all markup
// in the Word document.
filesettings.Add(new PNSetting("PageRange", "1-3"));
filesettings.Add(new PNSetting("Microsoft.Word.Document.PrintOut.Item", // converter setting
 "DocumentAndMarkup"));
fileInfoList.Add(new PNConvertFileInfo(@"C:\Test\InputFiles\File1.doc",
 String.Empty,
 filesettings));

Combining the List of Files

The code sample below uses the PNConvertFileInfo list created above to append both files into a
single multipaged TIFF image containing all the pages of the PDF and the first 3 pages of the Word
document with markup displayed.

Document Conversion Service 3.0

267 Converting With PEERNET.ConvertUtility

Working With PEERNET.ConvertUtility

When combining files, the output directory and final output file name must be provided and the
directory must exist before the call is made. The code calls CombineFiles to combine all files in the list
and place the final output file in the output folder specified.

The combined file will be created using the conversion settings from the profile TIFF 200dpi
OptimizedColor, plus any optional settings supplied for each file.

PNCombineItem resultsItem = null;
String outputDir = @"C:\Test\CombineOutput";
String outputName = "CombinedInput";

resultsItem =
 PNConverter.CombineFiles(fileInfoList, // PNConvertFileInfo collection
 outputDir, // output folder
 baseName, // name of combined file
 false, // overwrite
 false, // create results log
 "TIFF 200dpi OptimizedColor", // profile
 String.Empty, // File-ext
 String.Empty, // MIME
 null, // user settings
 String.Empty, // not using remote conversion (DCOM)
 String.Empty, // use default working folder
 String.Empty // Log path
);

268

Document Conversion Service 3.0

Converting With PEERNET.ConvertUtility

Working With PEERNET.ConvertUtility

Converting Files with Long Path Names

Historically, Windows (and before that, DOS) had a maximum path length (MAXPATH) of 260 characters.
While this has changed over the years to allow file paths of up to 32,000 characters, many of the
underlying components of Windows, including parts of Microsoft.NET, are still bound by the MAXPATH
limitation.

 Most of the time you never have to think about long path support but it does occasionally occur. A
common situation would be having to convert all the files in a directory structure on network attached
storage (NAS) created in UNIX or another file system where long paths are supported.

MAXPATH Limitation in Microsoft .NET

Several of the Microsoft.NET System.IO components, namely System.IO.File,
System.IO.Directory and System.IO.Path, are all limited by the length of MAXPATH when
dealing with files, directories and paths. If you need long path support you will need to P/Invoke
the WIN32 File API calls, or use a third-party library that provides long path name support.

All of the conversion methods in PEERNET.ConvertUtility will handle long path names for the input file or
folder, output locations, output file name and for the location of the XML results file and logging files.

The one caveat when dealing with long paths is that once the files and directory structures to be converted
are copied to the internal staging and working folders in the ConversionWorkingFolder to be processed,
those paths need to be less than 255 characters. This staging and working folder limitation is a
requirement of the underlying programs, such as Adobe Reader and Microsoft Office, that Document
Conversion Service uses to perform conversions. If the file path sent to Document Conversion Service to
be converted is longer than MAXPATH that file will gracefully fail to convert.

Keep in mind that even if the input folder path itself is not greater than MAXPATH, the underlying
subfolders and file names can create a path that is once they have been moved to the staging and
working folders. You can see by this sample directory shown below that the path C:\ALongPathTestFolder
we are using as the input folder path will generate file paths longer than MAXPATH.

Document Conversion Service 3.0

269 Converting With PEERNET.ConvertUtility

Working With PEERNET.ConvertUtility

Setting the ConversionWorkingFolder to Convert Files with Long Path
Names

The code sample below shows the settings and options that can be used to control the location of the
ConversionWorkingFolder, or the TEMP folder, where the internal staging and working folders are
created. Configuring this to a short path off the root of a drive can allow, in most case, for short
enough paths internally to convert the files and folders stored in longer paths elsewhere.

Inside the staging and working folders, PEERNET.ConvertUtility uses a date-time stamped subfolder
to control the conversion. By default an easy to read folder name similar to
Thursday_March_31_2016_10_16_32_AM is used. To shorten this further, you can set the
UseCompressedDateTimeFormat option to true to use the condensed date-time stamp. The
condensed version is strictly numerical and similar to 20160331131645, which is much shorter.

IList<PNConversionItem> results = new List<PNConversionItem>();
String strOutputFolder = @"C:\LongPathsTest\Output";
String strCustomTempFolder = @"C:\PN";

// This sample path is 263 chars
String strLogFile = @"C:\LongPathsTest\01234567890123456789012345678901234567890" +
 "123456789012345678901234567890123456789012345678901234567890" +
 "123456789012345678901234567890123456789012345678901234567890" +
 "12345678901234567890123456789\Output\SIL\" +
 "ConvertFolderWithAVeryLongName1234567890.sil";

// Directories must exist
if (!Directory.Exists(strOutputFolder))
{
 Directory.CreateDirectory(strOutputFolder);
}

if (!Directory.Exists(strCustomTempFolder))
{
 Directory.CreateDirectory(strCustomTempFolder);
}

IDictionary<String, String> UserSettings = new Dictionary<String, String>();
UserSettings.Add("UseCompressedDateTimeFormat", "True");

// Convert the folder
results = PNConverter.ConvertFolder(@"C:\ALongPathTestFolder",
 true, // include subfolders
 "*.*", // filter
 String.Empty, // exclude filter
 strOutputFolder, // output folder
 true, // overwrite existing
 true, // remove file ext
 true, // create log
 "TIFF 200dpi OptimizedColor", // conversion settings
 String.Empty, // extensison profile
 String.Empty, // MIME profile
 UserSettings, // User settings, compressed datetime
 String.Empty, // not using remote conversion (DCOM)
 strCustomTempFolder, // use custom working folder
 strLogFile); // long path to log file

270

Document Conversion Service 3.0

Converting With PEERNET.ConvertUtility

Working With PEERNET.ConvertUtility

Controlling Parallel Document Conversion

When converting a folder of files or a list of files it is important to remember that these files can be
processed in parallel, meaning that multiple files can be converted at the same time. This needs to be
taken into consideration with folders and list of files to avoid name collisions and accidental overwrites of
created files in the output folders.

The number of files that can be converted in parallel is firstly controlled by Document Conversion Service,
up to the limits of its license model. Secondly, the PEERNET.ConvertUtility also submits the documents to
the Document Conversion Service on parallel threads. The number of documents submitted is
automatically determined based on the number of CPU's and cores on your system multiplied by two.

We recommend that you allow this value to be determined automatically for best performance. If you do
need to customize how many documents you submit to Document Conversion Service in parallel, the
conversion setting NumberOfDocumentsInParallel can be passed as additional user settings to control
how many parallel threads the PEERNET.ConvertUtility uses.

Please note that this only applies to the ConvertFolder and ConvertFileList methods where you are
processing multiple files.

PNConversionItem resultItem = null;

// Add the number of threads
Dictionary<String, String> customSettings = new Dictionary<String, String>();
customSettings["NumberOfDocumentsInParallel"] = "6";

resultItem = PNConverter.ConvertFolder(@"C:\Test\InputFiles",
 true, // include subfolders
 "*.pdf", // filter
 String.Empty, // exclude filter
 @"C:\Test\Output", // output folder
 true, // overwrite existing
 false, // remove file ext
 false, // create log
 "TIFF 200dpi OptimizedColor", // settings
 String.Empty, // extensison profile
 String.Empty, // MIME profile
 customSettings, // User settings
 String.Empty, // not using remote conversion (DCOM)
 String.Empty, // use default working folder
 String.Empty);

Document Conversion Service 3.0

271 Converting With PEERNET.ConvertUtility

Working With PEERNET.ConvertUtility

Controlling the Failed Results File Location

The results log file is the XML file representation of the PNConversionItem returned when calling
ConvertFile, ConvertFileList, ConvertFolder and the XML file representation of the PNCombineItem when
calling CombineFiles.

This file is always created when a file fails to convert. The name of the results log file is based on the
name of the original file and also indicates the conversion status. For example, a failed conversion results
file for SampleDocument.pdf would be named SampleDocument.pdf.failed.dcsresults.

If a file has failed to convert, the default behavior when converting files, file lists and folder of files is to
create a .failed folder in the same location as the source file. When combining files the .failed folder is
created in the save location.

The conversion results log file is then saved in the .failed folder under a new subfolder created using the
date and time of the conversion. This subfolder is created to keep subsequent runs separate and can be
disabled.

272

Document Conversion Service 3.0

Converting With PEERNET.ConvertUtility

Working With PEERNET.ConvertUtility

Saving The Results Files in a Different Location

The location of these files can be customized and the use of the date and time named subfolder
turned off with the following custom settings:

· FailedFolder
· UseDateTimeInFailedFolder

The code sample below shows how to override the default use of the date time folder under the .failed
folder and to provide a specific folder in which to store the failed results log files.

IList<PNConversionItem> results = new List<PNConversionItem>();
String strOutputFolder = @"C:\Test\Output";
Dictionary<String, String> customSettings = new Dictionary<String, String>();

// Directory must exist
if (!Directory.Exists(strOutputFolder))
{
 Directory.CreateDirectory(strOutputFolder);
}

// Store .failed.dcsresults files in this folder
customSettings["FailedFolder"] = @"C:\Test\FailedFiles";

// DO NOT store results log files in date time folder under C:\Test\FailedFiles
customSettings["UseDateTimeInFailedFolder"] = "False";

// Convert the folder
results = PNConverter.ConvertFolder(@"C:\Test\InputFiles",
 true, // include subfolders
 "*.*", // filter
 "*.tif|*.jpg|*.bmp", // exclude filter
 strOutputFolder, // output folder
 true, // overwrite existing
 false, // remove file ext
 false, // create log
 "TIFF 200dpi OptimizedColor", // settings
 String.Empty, // extensison profile
 String.Empty, // MIME profile
 customSettings, // User settings
 String.Empty, // not using remote conversion (DCOM)
 String.Empty, // use default working folder
 String.Empty);

Document Conversion Service 3.0

273 Converting With PEERNET.ConvertUtility

Working With PEERNET.ConvertUtility

Disable Creation of Failed Results Files

You can disable the creation of the conversion results log files with the setting
KeepFailedItemResultsFiles. When this is set to false, the .failed.dcsresults files and the .failed
folder will not be created, even when conversion does not succeed.

IList<PNConversionItem> results = new List<PNConversionItem>();
String strOutputFolder = @"C:\Test\Output";
Dictionary<String, String> customSettings = new Dictionary<String, String>();

// Directory must exist
if (!Directory.Exists(strOutputFolder))
{
 Directory.CreateDirectory(strOutputFolder);
}

// Set this to False to discard failed results log files
customSettings["KeepFailedItemResultsFiles"] = "False";

// Convert the folder
results = PNConverter.ConvertFolder(@"C:\Test\InputFiles",
 true, // include subfolders
 "*.*", // filter
 "*.tif|*.jpg|*.bmp", // exclude filter
 strOutputFolder, // output folder
 true, // overwrite existing
 false, // remove file ext
 false, // create log
 "TIFF 200dpi OptimizedColor", // settings
 String.Empty, // extensison profile
 String.Empty, // MIME profile
 customSettings, // User settings
 String.Empty, // not using remote conversion (DCOM)
 String.Empty, // use default working folder,
 String.Empty);

274

Document Conversion Service 3.0

Converting With PEERNET.ConvertUtility

Working With PEERNET.ConvertUtility

Controlling the SmartInspect Logging Files

A SmartInspect log file is created each time a ConvertFile, ConvertFolder, ConvertFileList or
CombineFiles method is called. If the conversion is successful, this log file is automatically deleted. If the
conversion fails, the file is kept and stored in the Windows temp (%TEMP%) folder. Each logging file is
assigned a unique date, time and thread prefix followed by a name that identifies which method was used.

These log files are a tracing of the entire conversion process and are not the same as the conversion
results log files created when a conversion fails. These files can be viewed using the SmartInspect
Redistributable Console.

Method Sample Logging Filename

ConvertFile 2014_09_11_2_38_43_PM_4_PNConvertFile.sil

ConvertFileList 2014_09_11_2_41_56_PM_3_PNConvertFileList.sil

ConvertFolder 2014_09_12_3_35_37_PM_6_PNConvertFolder.sil

CombineFiles 2014_09_13_10_24_32_PM_2_PNConvertFile.sil

Saving The SmartInspect Log Files in a Different Location

You can customize where the SmartInspect log files are saved and how they are named through the
parameter ConvertFileProcessLoggingPath on the methods ConvertFile, ConvertFolder,
ConvertFileList or CombineFiles.

This parameter can take a folder or a path to a filename. If a path without a trailing backslash is
provided, the last part of the path is assumed to be a filename.

Pass ConvertFileProcessLoggingPath as... Is interpreted as...

"C:\Test\LogFile" Create the SmartInspect log file as C:
\Test\LogFile.sil.

"C:\Test\LogFile\" Create the SmartInspect log file as C:
\Test\LogFile\datetime_PNConvertFile.sil

"C:\Test\LogFile\ConvertFileCustom.sil" Create the SmartInspect log file as C:
\Test\LogFile\ConvertFileCustom.sil

You can remove the unique date, time and thread prefix used in the log file naming by passing the
custom setting RemoveDateTimePrefixOnProcessingLoggingFiles as True.

Document Conversion Service 3.0

275 Converting With PEERNET.ConvertUtility

Working With PEERNET.ConvertUtility

The code below will store all logging files for any failed conversion in the folder C:\Test\SILogging\ and
remove the datetime prefix from all logging files. This will create a logging file named
PNConvertFolder.sil as we are calling the ConvertFolder method.

IList<PNConversionItem> results = new List<PNConversionItem>();
String strOutputFolder = @"C:\Test\Output";
String strSILoggingFile = @"C:\Test\SILogging\";
Dictionary<String, String> customSettings = new Dictionary<String, String>();

// Directory must exist
if (!Directory.Exists(strOutputFolder))
{
 Directory.CreateDirectory(strOutputFolder);
}

// Remove datetime prefix from SI logging files
customSettings["RemoveDateTimePrefixOnProcessingLoggingFiles"] = "True";

// Convert the folder
results = PNConverter.ConvertFolder(@"C:\Test\InputFiles",
 true, // include subfolders
 "*.*", // filter
 "*.tif|*.jpg|*.bmp", // exclude filter
 strOutputFolder, // output folder
 true, // overwrite existing
 false, // remove file ext
 false, // create log
 "TIFF 200dpi OptimizedColor", // settings
 String.Empty, // extensison profile
 String.Empty, // MIME profile
 customSettings, // User settings
 String.Empty, // not using remote conversion (DCOM)
 String.Empty, // use default working folder
 strSILoggingFile); // SI logging file location

276

Document Conversion Service 3.0

Converting With PEERNET.ConvertUtility

Working With PEERNET.ConvertUtility

Disable Creation of Logging Files

To disable the creation of the SmartInspect log files when a conversion fails, the custom setting
KeepFailedProcessingLoggingFiles can be pass as False.

This setting can be overridden by the setting AlwaysKeepProcessingLoggingFiles, which when set
to True, will create SmartInspect logging files for both successful and failed conversions. The logging
files are still stored in the %TEMP% folder or the location specified by the
ConvertFileProcessLoggingPath parameter.

IList<PNConversionItem> results = new List<PNConversionItem>();
String strOutputFolder = @"C:\Test\Output";
Dictionary<String, String> customSettings = new Dictionary<String, String>();

// Directory must exist
if (!Directory.Exists(strOutputFolder))
{
 Directory.CreateDirectory(strOutputFolder);
}

// Set this to True to discard all SI logging files
customSettings["KeepFailedProcessingLoggingFiles"] = "False";

// Convert the folder
results = PNConverter.ConvertFolder(@"C:\Test\InputFiles",
 true, // include subfolders
 "*.*", // filter
 "*.tif|*.jpg|*.bmp", // exclude filter
 strOutputFolder, // output folder
 true, // overwrite existing
 false, // remove file ext
 false, // create log
 "TIFF 200dpi OptimizedColor", // settings
 String.Empty, // extensison profile
 String.Empty, // MIME profile
 customSettings, // User settings
 String.Empty, // not using remote conversion (DCOM)
 String.Empty, // use default working folder
 String.Empty);

Document Conversion Service 3.0

277 Converting With PEERNET.ConvertUtility

Working With PEERNET.ConvertUtility

Custom Settings for Logging Files

The table below lists all custom settings for controlling the SmartInspect logging files created through
the PEERNET.ConvertUtility methods.

Custom Setting Description

RemoveDateTimePrefixOnProcessingLoggingFiles Pass True to disable the adding of the
unique date, time and thread prefix when a
custom file name has not been specified in
the ConvertFileProcessLoggingPath
parameter.

KeepFailedProcessingLoggingFiles Pass as False to disable the automatic
creation of SmartInspect logging files when
conversion fails. This setting can be
overridden by
AlwaysKeepProcessingLoggingFiles.

AlwaysKeepProcessingLoggingFiles When set to True, the SmartInspect logging
files are always created in the %TEMP% or
other specified folder for both successful and
failed conversions. If set to False, no logging
files are created. This setting will override the
KeepFailedProcessingLoggingFiles setting.

278

Document Conversion Service 3.0

Converting With PEERNET.ConvertUtility

Working With PEERNET.ConvertUtility

Waiting for Document Conversion Service to be Ready to Convert

The Document Conversion Service must be running, either locally or on a remote computer for files or
folders of files to be converted. If it is not running the ConvertFile, ConvertFolder, ConvertFileList and
CombineFiles methods will all return immediately with an error.

In some scenarios, such as using these methods from another long running service, it may be desirable to
wait for Document Conversion Service to be running instead of failing to convert the files.

This can be done in either of two ways:

· use the IsConversionServiceRunning check to detect the running state in your code and wait in
your own loop accordingly

· pass a wait timeout value as a custom setting down the any of the methods to have the
PEERNET.ConvertUtility wait

Detect Running State

The following code demonstrates using the IsConversionServiceRunning method to wait a maximum
of fifteen minutes for the conversion service to be running. With this method, you can provide
feedback or the ability to cancel on shorter intervals.

PNConversionItem resultItem = null;
Boolean bIsRunning = false;
int maxTimeout = 900000, // 15 minutes
 currentTimeout = 0;

do
{
 if (PNConverter.IsConversionServiceRunning(String.Empty))
 {
 bIsRunning = true;

 resultItem = PNConverter.ConvertFolder(@"C:\Test\InputFiles",
 true, // include subfolders
 "*.pdf", // filter
 String.Empty, // exclude filter
 @"C:\Test\Output", // output folder
 true, // overwrite existing
 false, // remove file ext
 false, // create log
 "TIFF 200dpi OptimizedColor", // settings
 String.Empty, // extensison profile
 String.Empty, // MIME profile
 null, // User settings
 String.Empty, // not using remote conversion (DCOM)
 String.Empty, // use default working folder
 String.Empty);
 }
 else
 {
 if (currentTimeout < maxTimeout)
 {
 // Sleep for 30 seconds
 Console.WriteLine("Waiting for service to be available...");
 Thread.Sleep(30000);
 currentTimeout += 30000;
 }
 else
 {
 Console.WriteLine("Timeout on available service. No conversion performed.");
 bIsRunning = true;
 }

Document Conversion Service 3.0

279 Converting With PEERNET.ConvertUtility

Working With PEERNET.ConvertUtility

 }
} while (!bIsRunning);

Passing the Timeout Value to the PEERNET.ConvertUtility

The following code demonstrates passing the timeout value to the PEERNET.ConvertUtility to have
the utility wait for the desired maximum of fifteen minutes for the conversion service to be running. In
this case, if the conversion service is not running in the timeout value given the PNConversionItem
object resultItem returned will contain the error message that the conversion service is not running.

PNConversionItem resultItem = null;

// Pass down how long to wait for the conversion service to be running.
Dictionary<String, String> customSettings = new Dictionary<String, String>();
customSettings["SecondsToWaitForRunningConversionService"] = "900"; // 15 minutes max

resultItem = PNConverter.ConvertFolder(@"C:\Test\InputFiles",
 true, // include subfolders
 "*.pdf", // filter
 String.Empty, // exclude filter
 @"C:\Test\Output", // output folder
 true, // overwrite existing
 false, // remove file ext
 false, // create log
 "TIFF 200dpi OptimizedColor", // settings
 String.Empty, // extensison profile
 String.Empty, // MIME profile
 customSettings, // User settings
 String.Empty, // not using remote conversion (DCOM)
 String.Empty, // use default working folder
 String.Empty);

280

Document Conversion Service 3.0

Converting With PEERNET.ConvertUtility

Deploying Applications

Deploying Applications

When deploying applications build with PEERNET.ConvertUtility, the following files must be included with
your application.

Changes to Files starting with version 3.27

Starting with Document Conversion Service 3.27, the Xfinium library used by
PEERNET.ConvertUtility is Xfinium.Pdf.Win.dll. Any programs using
PEERNET.ConvertUtility.dll and scripts used to copy the required files that use the old library
name of XFinium.Pdf.Pcl.xml need to be updated.

· PEERNET.ConvertUtility.dll

· Gurock.SmartInspect.dll

· SmartThreadPool.dll

· Xfinium.Pdf.Win.dll, Xfinium.Pdf.Win.xml starting with Document Conversion Service 3.27

o XFinium.Pdf.Pcl.dll, XFinium.Pdf.Pcl.xml prior to Document Conversion Service 3.27

· AlphaFS.dll

· AlphaFS.xml

· If your application will installed on client machines where Document Conversion Service is not
installed, the Document Conversion Service Client Redistributable also needs to be installed with
your application.

· Any custom profiles (see Creating and Customizing Profiles) that you created.

Adding the Reference to Your Application

When you add the PEERNET.ConvertUtility.dll as a reference into your .NET application, set its Copy
Local property to True to have this library and its dependencies automatically copied to your build output
path when you do a build.

Document Conversion Service 3.0

281 Converting With PEERNET.ConvertUtility

Deploying Applications

If you need to manually copy these files you can find them in the \Samples\Redist folder under the
Document Conversion Service installation tree.

Installing the Document Conversion Service Client Redistributable With
Your Application

When your application will be running on client computers where Document Conversion Service is not
installed, meaning you are doing remote conversion, also called client-server conversion, the Document
Conversion Service Client Redistributable will also need to be installed.

This redistributable can be installed as a separate step from your application, called from your installation,
or you can bundle it with your own install by using command line arguments to run the install silently.

282

Document Conversion Service 3.0

Converting With PEERNET.ConvertUtility

Deploying Applications

There are two types of setup that can be controlled from the command line - BASIC, and FULL. The
BASIC setup only installs the required components for remote conversion in a client-server environment.
The FULL setup will also install the Watch Folder Service and sample code, the command line conversion
tools and all additional sample code.

When the client install is not run silently, the command line arguments are ignored.

PNDocConvClientSetup_3.0.exe /S
PASSWORD="password"
[SETUPTYPE=BASIC|FULL]
[DCSUSER="domain\user"]

Document Conversion Service 3.0

283 Converting With PEERNET.ConvertUtility

Deploying Applications

Sample Command Lines

PNDocConvClientSetup_3.0.exe /s PASSWORD=”password”

Runs the basic client setup silently with no UI. The local DCSAdmin account will be created with
the supplied password, or if it already exists, will be validated and used with the supplied
password.

PNDocConvClientSetup_3.0.exe /s SETUPTYPE=BASIC DCSUSER=”.\MyLocalUser” PASSWORD=”password”

Runs the basic client setup silently with no UI.

The local account MyLocalUser will be created with the supplied password, or if it already
exists, will be validated and used with the supplied password.

PNDocConvClientSetup_3.0.exe /s SETUPTYPE=FULL DCSUSER=”DOMAIN\MyUser” PASSWORD=”password”

Runs the full client setup silently with no UI.

The domain account MyUser will be validated and used with the supplied password.

/S - Silent Install

This will run the installation silently with no wizard. If no SETUPTYPE is specified, then a BASIC
install is done.

The client install also requires that the PASSWORD= variable be provided. When used without the
DCSUSER= variable, the password is used to create or validate an existing DCSAdmin account. If not
provided the setup will terminate.

PASSWORD="password"

The client install requires a user account with administrative privileges to initialize the services and
configure for client-server conversion. A password must be supplied to create the account, or validate
the account if an existing one is used. If the account cannot be validated the setup will terminate.

SETUPTYPE=BASIC|FULL

Choose the setup type - BASIC or FULL. The BASIC setup only installs the required components for
remote conversion in a client-server environment. The FULL setup will also install the Watch Folder
Service and sample code, the command line conversion tools and all additional sample code.

When this argument is not specified, a BASIC setup is installed.

DCSUSER="domain\user"

The services and configuration for client-server conversion require a user account, local or domain-
level, that has administrative privileges. We normally recommend that you let us create and use our
local account DCSAdmin.

If you cannot use this account you can specify here a different user. If using a domain account, you
need to specify the domain and user name. The install process also needs to be able to validate the
account. The setup will fail if the account cannot be validated. If you are using a different local
account, specify the local account using the dot syntax for local, ".\MyLocalUser".

284

Document Conversion Service 3.0

Converting With PEERNET.ConvertUtility

PEERNET.ConvertUtility Namespace

PEERNET.ConvertUtility Namespace

The PEERNET.ConvertUtility namespace contains the main classes that allow you to communicate with
Document Conversion Service and convert files from your own applications.

If you are new to the PEERNET.ConvertUtility namespace, see the C# Tutorial or the Visual Basic .NET
Tutorial for step-by-step instructions to get you started.

Note

All public constructors, methods and properties are documented here. Constructors, methods, and
properties that are visible through the Object Browser or through Intellisense but are not
documented here are private to the namespace and should not be used.

Objects

Object Description

 PNConverter

This class contains all of the static conversion
methods for converting files, folders of files and
collections of individual files.

 PNConvertFileInfo

Describes a single input file to be converted, the
output path for that file and an optional collection
of settings to use when converting the file. This
object is used with the PNConvert method
ConvertFileList.

 PNConversionItem

This object, or a collection of these objects, is
returned by all of the conversion methods in
PNConverter except for CombineFiles. It
contains information about the original
conversion request and a PNConversionResult
object containing information about the
conversion results.

 PNCombineItem

This object is returned by the PNConverter
method CombineFiles. It contains information
about the original file combine (append) request,
a list of the output files created, and an inner list
of PNConversionResult items for each file
included as part of the combine operation.

 PNConversionResult

This object contain the list of files created, or if no
files were created, a list of errors and messages
explaining why the conversion failed.

 PNConversionResultError

A collection of these objects, one for each error,
is returned as part of the NConversionResult
object if a conversion fails.

Document Conversion Service 3.0

285 Converting With PEERNET.ConvertUtility

PEERNET.ConvertUtility Namespace

Object Description

 PNConversionResultMessage

A collection of these objects containing
informational messages is returned as part of the
PNConversionResult object. This collection can
be empty.

 PNConversionResultOutputFile

A collection of one ore more of these objects is
returned as part of the PNConversionResult
object. This object contains the output path to the
converted file.

 PNConversionResultOutputFileRenderedPage

A collection of one ore more of these objects is
returned as part of the PNConversionResult
object. This object contains information about this
created page such as the page number in the file
and the resolution, orientation and bit level of the
created page.

 PNConversionResultPrintJob

A collection of one ore more of these objects is
returned as part of the PNConversionResult
object. This object contains information about the
print job, such as the number of pages spooled
or pages printed and the status of the print job
that was used to convert the input file.

 PNConversionResultPrintJobPrintedPage

A collection of one or more of these objects is
returned as part of the PNConversionResult
object. This object contains information about
each printed page of the input file, such as the
resolution, orientation, and page number of the
print job.

 PNProfile

Provides an interface for working with the profiles
that Document Conversion Service uses to
convert documents. Profiles control both the type
of file created and optionally the behavior of the
converters.

 PNSetting

An object that represents a setting as a name-
value pair.

Enumerations

Object Description

 PNConvertResultStatus
Conversion status result as a short string message.

286

Document Conversion Service 3.0

Converting With PEERNET.ConvertUtility

PEERNET.ConvertUtility Namespace

PNConverter

Description

PNConverter is the main class in the PEERNET.ConvertUtility .NET library. It contains all of the
methods that you will use to convert files, folders of files and list of files in your application code.

It also contains the method IsConversionServiceRunning that allows you to synchronize with the
Document Conversion Service being running and ready to convert.

Methods

 ConvertFile

Converts a single file, using the suppplied conversion
settings, to the specified output folder. Can optionally
specify a custom name.

 ConvertFileList
Converts a list of files. Uses the PNConvertFileInfo class to
build the list of files.

 ConvertFolder
Converts all files in the folder that match the given file
extension filter. Can optionally recurse into subdirectories.

 CombineFiles
Combines the list of files into a single, multipaged output
file. Supports TIFF and PDF output.

 CombineFolder

Combines all files in the folder, and optionally all subfolders
into a single, multipaged output file. Supports TIFF and
PDF output.

 IsConversionServiceRunning

Query if Document Conversion Service is running. The
service must be running, either locally or remotely on
another computer for conversion to take place.

Methods

ConvertFile

Description

Static method.

Converts a file using the requested conversion settings.

Syntax

PNConverter.ConvertFile(InputFile, OutputFolder, OutputName,

 OverwriteExisting, RemoveFileExtension, CreateResultsLogFiles,

 SettingsProfile, ExtensionsProfile, MIMEProfile, UserSettings,

 RemoteComputerName, ConversionWorkingFolder,

 ConvertFileProcessLoggingPath)

Document Conversion Service 3.0

287 Converting With PEERNET.ConvertUtility

PEERNET.ConvertUtility Namespace

PNConverter.ConvertFile(InputFile, OutputFolder, OutputName,

 OverwriteExisting, RemoveFileExtension, CreateResultsLogFiles,

 SettingsList, ExtensionsProfile, MIMEProfile, UserSettings,

 RemoteComputerName, ConversionWorkingFolder,

 ConvertFileProcessLoggingPath)

Returns a PNConversionItem object that contains information about the original conversion request
and an inner PNConversionResult object containing information about the conversion results.

Parameters

String InputFile

The full path to the file to convert. This can be on the local computer, on a shared location using a
mapped drive letter or by passing a UNC formatted file path.

String OutputFolder

Full path to the save file location, or String.Empty to create the new file in the same location as the
source file. If the path doesn't exist, the conversion will fail. This folder must be created before the
call to ConvertFolder is made.

If a file of the same name already exists in the save file location, the conversion will fail. Pass
True for OverwriteExisting to allow file overwriting.

String OutputName

The name to use for the output file, without extension. The default file extension for the type of file
being created will always be added to the name provided here.

Pass String.Empty to use the base name of the source file. When using the source name, the
extension of the source file is always used as part of the new file name unless
RemoveFileExtension is set to True.

Boolean OverwriteExisting

Set to True to overwrite existing files, or False to fail conversion when a file of the same name
already exists in the save location.

Boolean RemoveFileExtension

This parameter is ignored if you have provided an file name in OutputName.

If OutputName is not specified, the name of the each output file is created using the base name
and file extension of the original file. This is done to prevent name collision when you have two
files in the folder with the same base name. Set this to True if you do not want the original file
name extension as part of your output file name.

Boolean CreateResultsLogFile

Pass True to create a results log file containing a complete snapshot of the conversion
information, This file is saved with the output file. The name of the results log file is based on the
name of the original file and also indicates the conversion status. For example, when converting
Sample.doc, a successful conversion will create Sample.doc.succeeded.dcsresults and if the
conversion did not succeed, the file would be named Sample.doc.failed.dcsresults.

These log files can later be read from disk using the DeserializeFromXML method of the
PNConversionItem class.

String SettingsProfile

288

Document Conversion Service 3.0

Converting With PEERNET.ConvertUtility

PEERNET.ConvertUtility Namespace

The name of the profile to use, with or without the XML extension. Document Conversion Service
includes several sample profiles for common types of output files for your use, or you can create
your own and pass in a full path to your custom profile. See Creating and Customizing Profiles for
a list of included profiles and how to create your own.

IDictionary<String, String> SettingsList

A dictionary of name\value pairs of settings that describes the conversion options. The
name\value pairs that make up this dictionary are the same settings that are used to create the
XML-formatted profiles included with Document Conversion Service. See Conversion Settings for
a list of all of the settings that are available.

String ExtensionsProfile

Name of the file mapping profile XML file, with or without the XML extension. Providing this
parameter is optional and an internal default mapping is provided. You would only need to provide
this file if you wanted to override the default file extension to converter mappings provided.

String MimeProfile

Reserved for future use - pass String.Empty.

IDictionary<String, String> UserSettings

Optional. Pass a dictionary of additional conversion settings. These settings will override any
matching settings in either SettingsProfile or SettingsList. Pass null if not using.

String RemoteComputerName

Optional. Pass String.Empty if you are converting locally or the name of the remote computer
where Document Conversion Service is running. When converting remotely, a
ConversionWorkingFolder must also be provided.

String ConversionWorkingFolder

Used to provide a shared path to be used when doing remote conversion or an alternate
temporary working instead of our default of the Windows TEMP folder.

This setting is required when RemoteComputerName is provided for remote conversion (DCOM)
as both the local and the remote computer need access to a shared path in which to do the
conversion. Pass String.Empty if you are not using this setting.

When not doing remote conversion, this setting is not required in most cases but can be useful
when dealing with folder and file names longer than 255 characters. When converting a file, the
conversion tool copies the file and performs the conversion in temporary staging and working
folders created on demand in the default Windows temp folder. These folders need to be less
than 255 characters as required by the underlying programs used by Document Conversion
Service to perform conversions. When dealing with these long path and file names the default
folders created can occasionally cause path names that are too long for Document Conversion
Service to process. When this happens this switch can be used to set the temporary folder to a
shorter path to allow processing. Again, pass String.Empty if you are not using this setting.

String ConvertFileProcessLoggingPath

Optional. Specify a path to a folder in which to store the SmartInspect logs files of any failed
conversion process. These files are stored in the temp folder by default and can be viewed using
the SmartInspect Redistributable Console. These log files are a tracing of the entire conversion
process and are not the same as the conversion results log files created when a conversion fails.
See Controlling the SmartInspect Logging Files to change where these files are stored, how they
are named, or to disable creation of these files.

Document Conversion Service 3.0

289 Converting With PEERNET.ConvertUtility

PEERNET.ConvertUtility Namespace

Remarks

If the conversion does not succeed, a folder named .failed is created in the same location as the
source file. Inside the .failed folder is a timestamped folder that contains the conversion results log file
that is always created with each failed file. The results log file named based on the source file's name
and its conversion status. For example, if converting Document.doc failed the results log file would be
named Document.doc.failed.dcsresults. See Controlling the Failed Results File Location to store these
files in a different location or to disable the creation of these file.

Exceptions

Exception Condition

ArgumentException An empty, or badly formatted profile was passed for
SettingsProfile.
An empty list was passed for SettingsList.
An empty, or badly formatted profile was passed for
ExtensionsProfile.
Null or empty string passed for InputFile.
A name for RemoteComputerName was passed but no
corresponding ConversionWorkingFolder specified.

FileNotFoundException InputFile doesn't exist.

DirectoryNotFoundException When a path to OutputFolder is specified but does not exist or is
invalid.
When ConversionWorkingFolder is specified but does not exist or
is invalid.

See Also:

ConvertFileList ConvertFolder CombineFiles CombineFolder IsConversionServiceRunning

Code Sample - C#

PNConversionItem resultItem = null;

resultItem = PNConverter.ConvertFile(@"C:\Test\File.pdf",
 @"C:\Test\Output",
 @"ConvertedFromPDF",
 true, // overwrite existing
 false, // do not remove file ext
 false, // do not create log
 "TIFF 200dpi OptimizedColor",
 String.Empty,
 String.Empty,
 null, // no custom user settings
 String.Empty, // not using DCOM
 String.Empty, // use default working folder
 String.Empty); // do not use custom log folder

290

Document Conversion Service 3.0

Converting With PEERNET.ConvertUtility

PEERNET.ConvertUtility Namespace

Code Sample - VB.NET

Dim resultItem As PNConversionItem

resultItem = Nothing

resultItem = PNConverter.ConvertFile("C:\Test\File.pdf", _
 "C:\Test\Output", _
 "ConvertedFromPDF", _
 True, _
 False, _
 False, _
 "TIFF 200dpi OptimizedColor", _
 String.Empty, _
 String.Empty, _
 Nothing, _
 String.Empty, _
 String.Empty, _
 String.Empty)

ConvertFileList

Description

Static method.

Converts a list of files using the requested conversion settings.

Syntax

PNConverter.ConvertFileList(FileInfoList, OutputFolder, OutputName,

 OverwriteExisting, RemoveFileExtension, CreateResultsLogFiles,

 SettingsProfile, ExtensionsProfile, MIMEProfile, UserSettings,

 RemoteComputerName, ConversionWorkingFolder,

 ConvertFileProcessLoggingPath)

PNConverter.ConvertFileList(FileInfoList, OutputFolder, OutputName,

 OverwriteExisting, RemoveFileExtension, CreateResultsLogFiles,

 SettingsList, ExtensionsProfile, MIMEProfile, UserSettings,

 RemoteComputerName, ConversionWorkingFolder,

 ConvertFileProcessLoggingPath)

PNConverter.ConvertFileList(FileList, OutputFolder, OutputName,

 OverwriteExisting, RemoveFileExtension, CreateResultsLogFiles,

 SettingsProfile, ExtensionsProfile, MIMEProfile, UserSettings,

 RemoteComputerName, ConversionWorkingFolder,

 ConvertFileProcessLoggingPath)

PNConverter.ConvertFileList(FileList, OutputFolder, OutputName,

 OverwriteExisting, RemoveFileExtension, CreateResultsLogFiles,

 SettingsList, ExtensionsProfile, MIMEProfile, UserSettings,

 RemoteComputerName, ConversionWorkingFolder,

 ConvertFileProcessLoggingPath)

Document Conversion Service 3.0

291 Converting With PEERNET.ConvertUtility

PEERNET.ConvertUtility Namespace

Returns an IList of PNConversionItem objects, one for each file in the supplied list of files. Each
PNConversionItem contains information about the original conversion request and an inner
PNConversionResult object containing information about the conversion results.

Parameters

IList<PNConvertFileInfo> FileInfoList

A list of PNConvertFileInfo objects. Each PNConvertFileInfo object describes a single input file to
be converted, the output path for that file and an optional collection of settings to use when
converting the file. If the output path for the file is not set in the PNConvertFileInfo object then the
OutputFolder parameter is used.

IList<String> FileList

A list of strings representing the full paths of each file to convert. The files can be on the local
computer, on a shared location using a mapped drive letter or by passing a UNC formatted file
path.

String OutputFolder

Full path to the save file location, or String.Empty to create the new file in the same location as the
source file.

This folder must be created before the call to ConvertFileList is made. If the path doesn't exist or a
file of the same name already exists in the save file location, the conversion will fail. Pass True for
OverwriteExisting to allow file overwriting.

If FileInfoList is used and the an output path is specified in the PNConvertFileInfo object, this
parameter is ignored.

String OutputName

The name to use for the output file, without extension. The default file extension for the type of file
being created will always be added to the name provided here.

Pass String.Empty to use the base name of the source file. When using the source name, the
extension of the source file is used as part of the new file name unless RemoveFileExtension is
set to True.

String OverwriteExisting

Set to True to overwrite existing files, or False to fail conversion when a file of the same name
already exists in the save location.

String RemoveFileExtension

This parameter is ignored if you have provided an file name in OutputName.

If OutputName is not specified, the name of the each output file is created using the base name
and file extension of the original file. This is done to prevent name collision when you have two
files in the folder with the same base name. Set this to True if you do not want the original file
name extension as part of your output file name.

String CreateResultsLogFile

Pass True to create a results log file containing a complete snapshot of the conversion
information for each file. This file is saved with each output file. The name of the results log file is
based on the name of the original file and also indicates the conversion status. For example, when
converting Sample.doc, a successful conversion will create Sample.doc.succeeded.dcsresults and
if the conversion did not succeed, the file would be named Sample.doc.failed.dcsresults.

292

Document Conversion Service 3.0

Converting With PEERNET.ConvertUtility

PEERNET.ConvertUtility Namespace

These log files can later be read from disk using the DeserializeFromXML method of the
PNConversionItem class.

String SettingsProfile

The name of the profile to use, with or without the XML extension. Document Conversion Service
includes several sample profiles for common types of output files for your use, or you can create
your own and pass in a full path to your custom profile. See Creating and Customizing Profiles for
a list of included profiles and how to create your own.

IDictionary<String, String> SettingsList

A dictionary of name\value pairs of settings that describes the conversion options. The
name\value pairs that make up this dictionary are the same settings that are used to create the
XML-formatted profiles included with Document Conversion Service. See Conversion Settings for
a list of all of the settings that are available.

String ExtensionsProfile

Name of the file mapping profile XML file, with or without the XML extension. Providing this
parameter is optional and an internal default mapping is provided. You would only need to provide
this file if you wanted to override the default file extension to converter mappings provided.

String MimeProfile

Reserved for future use - pass String.Empty.

IDictionary<String, String> UserSettings

Optional. Pass a dictionary of additional conversion settings. These settings will override any
matching settings passed in for SettingsProfile or SettingsList. Pass null if not using.

String RemoteComputerName

Optional. Pass String.Empty if you are converting locally or the name of the remote computer
where Document Conversion Service is running. When converting remotely, a
ConversionWorkingFolder must also be provided.

String ConversionWorkingFolder

Used to provide a shared path to be used when doing remote conversion or an alternate
temporary working instead of our default of the Windows TEMP folder. This setting is required
when RemoteComputerName is provided for remote conversion (DCOM) as both the local and the
remote computer need access to a shared path in which to do the conversion. Pass String.Empty
if you are not using this setting.

When not doing remote conversion, this setting is not required in most cases but can be useful
when dealing with folder and file names longer than 255 characters. When converting a file, the
conversion tool copies the file and performs the conversion in temporary staging and working
folders created on demand in the default Windows temp folder. These folders need to be less
than 255 characters as required by the underlying programs used by Document Conversion
Service to perform conversions. When dealing with these long path and file names the default
folders created can occasionally cause path names that are too long for Document Conversion
Service to process. When this happens this switch can be used to set the temporary folder to a
shorter path to allow processing. Again, pass String.Empty if you are not using this setting.

String ConvertFileProcessLoggingPath

Optional. Specify a path to a folder in which to store the SmartInspect logs files of any failed
conversions. These files are stored in the temp folder by default and can be viewed using the
SmartInspect Redistributable Console. These log files are a tracing of the entire conversion
process and are not the same as the conversion results log files created when a conversion fails.
See Controlling the SmartInspect Logging Files to change where these files are stored, how they
are named, or to disable creation of these files.

Document Conversion Service 3.0

293 Converting With PEERNET.ConvertUtility

PEERNET.ConvertUtility Namespace

Remarks

If conversion of any of the files in the list does not succeed, a folder named .failed is created in the
same location as that source file. Inside the .failed folder is a timestamped folder that contains the
conversion results log file that is always created with each failed file. The results log file named based
on the source file's name and its conversion status. For example, if converting Document.doc failed
the results log file would be named Document.doc.failed.dcsresults. See Controlling the Failed Results
File Location to store these files in a different location or to disable the creation of these file.

Exceptions

Exception Condition

ArgumentException An empty, or badly formatted profile was passed for
SettingsProfile.
An empty list was passed for SettingsList.
An empty, or badly formatted profile was passed for
ExtensionsProfile.
An empty list was passed for FileInfoList or FileList.
A name for RemoteComputerName was passed but no
corresponding ConversionWorkingFolder specified.

FileNotFoundException One of the input files in the FileInfoList or FileList does not exist or
cannot be accessed.

DirectoryNotFoundException One of the output paths in the FileInfoList does not exist, or when
OutputFolder is specified but the path does not exist or is invalid.
When ConversionWorkingFolder is specified but does not exist or
is invalid.

See Also:

ConvertFile ConvertFolder CombineFiles CombineFolder IsConversionServiceRunning

Code Sample - C#

IList<PNConversionItem> results = new List<PNConversionItem>();
IList<PNConvertFileInfo> filesToTIFF = new List<PNConvertFileInfo>();

filesToTIFF.Add(new PNConvertFileInfo(@"C:\Test\File1.pdf",
 @"C:\Test\Output\1");

filesToTIFF.Add(new PNConvertFileInfo(@"C:\Test\File2.pdf",
 @"C:\Test\Output\2");

results = PNConverter.ConvertFileList(filesToTIFF,
 String.Empty,
 String.Empty,
 true, // overwrite existing
 false, // do not remove file ext
 false, // do not create log
 "TIFF 200dpi OptimizedColor",
 String.Empty,
 String.Empty,
 null, // no custom user settings
 String.Empty, // not using DCOM
 String.Empty, // use default working folder
 String.Empty); // do not use custom log folder

294

Document Conversion Service 3.0

Converting With PEERNET.ConvertUtility

PEERNET.ConvertUtility Namespace

Code Sample - VB.NET

Dim filesToTIFF As IList(Of PNConvertFileInfo)
Dim results As IList(Of PNConversionItem)

filesToTIFF.Add(New PNConvertFileInfo("C:\Test\File1.pdf", _
 "C:\Test\Output\1"))
filesToTIFF.Add(New PNConvertFileInfo("C:\Test\File2.pdf", _
 "C:\Test\Output\2"))

results = PNConverter.ConvertFileList(filesToTIFF, _
 String.Empty, _
 String.Empty, _
 True, _
 False, _
 False, _
 "TIFF 200dpi OptimizedColor", _
 String.Empty, _
 String.Empty, _
 Nothing, _
 String.Empty, _
 String.Empty, _
 String.Empty)

ConvertFolder

Description

Static method.

Converts all files in the folder, and optionally all subfolders, using the requested conversion settings.

A filter pattern can be used to only process files in the folder that match the provided pattern, such as
.doc to process all Word documents, or ABC to process all files that start with the letters ABC.

An exclude filter is also provided, to allow you to skip files that match the exclude pattern.

Syntax

PNConverter.ConvertFolder(InputFolder, IncludeSubFolders, Filter, ExcludeFilter,

 OutputFolder, OverwriteExisting, RemoveFileExtension, CreateResultsLogFiles,

 SettingsProfile, ExtensionsProfile, MIMEProfile, UserSettings,

 RemoteComputerName, ConversionWorkingFolder,

 ConvertFolderProcessLoggingFilePath)

PNConverter.ConvertFolder(InputFolder, IncludeSubFolders, Filter, ExcludeFilter,

 OutputFolder, OverwriteExisting, RemoveFileExtension, CreateResultsLogFiles,

 SettingsProfile, ExtensionsProfile, MIMEProfile, UserSettings,

 RemoteComputerName, ConversionWorkingFolder,

 ConvertFolderProcessLoggingFilePath,

 SortOrder, SortMode)

PNConverter.ConvertFolder(InputFolder, IncludeSubFolders, Filter, ExcludeFilter,

 OutputFolder, OverwriteExisting, RemoveFileExtension, CreateResultsLogFiles,

 SettingsList, ExtensionsProfile, MIMEProfile, UserSettings,

Document Conversion Service 3.0

295 Converting With PEERNET.ConvertUtility

PEERNET.ConvertUtility Namespace

 RemoteComputerName, ConversionWorkingFolder,

 ConvertFolderProcessLoggingFilePath)

PNConverter.ConvertFolder(InputFolder, IncludeSubFolders, Filter, ExcludeFilter,

 OutputFolder, OverwriteExisting, RemoveFileExtension, CreateResultsLogFiles,

 SettingsList, ExtensionsProfile, MIMEProfile, UserSettings,

 RemoteComputerName, ConversionWorkingFolder,

 ConvertFolderProcessLoggingFilePath

 SortOrder, SortMode)

Returns an IList of PNConversionItem objects, one for each file in the folder (and subfolders, if
selected) that matched the filter pattern. Each PNConversionItem contains information about the
original conversion request and an inner PNConversionResult object containing information about the
conversion results.

Parameters

String InputFolder

The full path to the folder containing the files to convert. This can be on the local computer, on a
shared location using a mapped drive letter or by passing a UNC formatted file path.

String IncludeSubFolders

Set to True to include the subfolders under the folder when building the list of files to be
converted.

String Filter

A filter to process only the files matching the filter pattern, such as using *.pdf to only process files
ending with the .PDF or .pdf extension. Multiple filters can be combined using the pipe (|)
character, such as *.doc|*.pdf to process only Word and PDF files.

Hidden and system files are ignored, and the search pattern filters files based on a regular
expression match of the long name of a file. The filter defaults to all files in the folder (*.*) if
String.Empty or null are passed for the filter.

String ExcludeFilter

After the Filter pattern is used to get the list of files to convert from the InputFolder, the exclude
filter can then be applied to that list to remove files that match the exclude pattern. Multiple
excluded filters are combined using the pipe (|) character, such as *.pdf|*.xml to process all files
returned except PDF and XML files.

If String.Empty or null is passed then no files are excluded.

String OutputFolder

Full path to the save file location. If this argument is not specified, a .new folder named .converted
is created in the same location as the source file and all output files are saved there.

If the path doesn't exist, the conversion will fail, or if a file of the same name already exists in the
save file location, the conversion will fail. Pass True for OverwriteExisting to allow file overwriting.

String OverwriteExisting

Set to True to overwrite existing files, or False to fail conversion when a file of the same name
already exists in the save location.

String RemoveFileExtension

296

Document Conversion Service 3.0

Converting With PEERNET.ConvertUtility

PEERNET.ConvertUtility Namespace

Set this to True if you do not want the original file name extension as part of your output file name.
Normally the name of the each output file is created using the base name and file extension of the
original file to prevent name collision when you have two files in the folder with the same base
name.

String CreateResultsLogFile

Pass True to create a results log file containing a complete snapshot of the conversion
information for each file. This log file is saved with each output file. The name of the results log file
is based on the name of the original file and also indicates the conversion status. For example,
when converting Sample.doc, a successful conversion will create
Sample.doc.succeeded.dcsresults and if the conversion did not succeed, the file would be named
Sample.doc.failed.dcsresults.

These log files can later be read from disk using the DeserializeFromXML method of the
PNConversionItem class.

String SettingsProfile

The name of the profile to use, with or without the XML extension. Document Conversion Service
includes several sample profiles for common types of output files for your use, or you can create
your own and pass in a full path to your custom profile. See Creating and Customizing Profiles for
a list of included profiles and how to create your own.

IDictionary<String, String> SettingsList

A dictionary of name\value pairs of settings that describes the conversion options. The
name\value pairs that make up this dictionary are the same settings that are used to create the
XML-formatted profiles included with Document Conversion Service. See Conversion Settings for
a list of all of the settings that are available.

String ExtensionsProfile

Name of the file mapping profile XML file, with or without the XML extension. Providing this
parameter is optional and an internal default mapping is provided. You would only need to provide
this file if you wanted to override the default file extension to converter mappings provided.

String MimeProfile

Reserved for future use - pass String.Empty.

IDictionary<String, String> UserSettings

Optional. Pass a dictionary of additional conversion settings. These settings will override any
matching settings in either SettingsProfile or SettingsList. Pass null if not using.

String RemoteComputerName

Optional. Pass String.Empty if you are converting locally or the name of the remote computer
where Document Conversion Service is running. When converting remotely, a
ConversionWorkingFolder must also be provided.

String ConversionWorkingFolder

Used to provide a shared path to be used when doing remote conversion or an alternate
temporary working instead of our default of the Windows TEMP folder.

This setting is required when RemoteComputerName is provided for remote conversion (DCOM)
as both the local and the remote computer need access to a shared path in which to do the
conversion. Pass String.Empty if you are not using this setting.

When not doing remote conversion, this setting is not required in most cases but can be useful
when dealing with folder and file names longer than 255 characters. When converting a file, the
conversion tool copies the file and performs the conversion in temporary staging and working

Document Conversion Service 3.0

297 Converting With PEERNET.ConvertUtility

PEERNET.ConvertUtility Namespace

folders created on demand in the default Windows temp folder. These folders need to be less
than 255 characters as required by the underlying programs used by Document Conversion
Service to perform conversions. When dealing with these long path and file names the default
folders created can occasionally cause path names that are too long for Document Conversion
Service to process. When this happens this switch can be used to set the temporary folder to a
shorter path to allow processing. Again, pass String.Empty if you are not using this setting.

String ConvertFileProcessLoggingPath

Optional. Specify a path to a folder in which to store the SmartInspect logs files of any failed
conversions. These files are stored in the temp folder by default and can be viewed using the
SmartInspect Redistributable Console. These log files are a tracing of the entire conversion
process and are not the same as the conversion results log files created when a conversion fails.
See Controlling the SmartInspect Logging Files to change where these files are stored, how they
are named, or to disable creation of these files.

PNFileSortMode SortMode

Optional, controls the sort order of the list of files returned from the InputFolder. Files can be
sorted by name, date created or date modified. Default is None when not specfied.

PNFileSortOrder SortOrder

Optional, returns the files in Ascending (0-9, A-Z) or Descending (Z-A, 9-0) order. Default is
Ascending when not specified.

Remarks

If conversion of any of the files in the folder does not succeed, a folder named .failed is created in the
same location as that file. Inside the .failed folder is a timestamped folder that contains the conversion
results log file that is always created with each failed file. The results log file named based on the
source file's name and its conversion status. For example, if converting Document.doc failed the
results log file would be named Document.doc.failed.dcsresults. See Controlling the Failed Results
File Location to store these files in a different location or to disable the creation of these file.

Exceptions

Exception Condition

ArgumentException An empty, or badly formatted profile was passed for
SettingsProfile
An empty list was passed for SettingsList
An empty, or badly formatted profile was passed for
ExtensionsProfile.

Null or empty string passed for InputFile.
A name for RemoteComputerName was passed but no
corresponding ConversionWorkingFolder specified.

FileNotFoundException InputFile doesn't exist.

DirectoryNotFoundException The path to InputFolder is specified but does not exist or is invalid.
The path to OutputFolder is specified but does not exist or is
invalid.
The path to ConversionWorkingFolder is specified but does not
exist or is invalid.

298

Document Conversion Service 3.0

Converting With PEERNET.ConvertUtility

PEERNET.ConvertUtility Namespace

See Also:

ConvertFile ConvertFileList CombineFiles CombineFolder IsConversionServiceRunning

Code Sample - C#

IList<PNConversionItem> results = new List<PNConversionItem>();

// Convert all files in C:\Test\Input except TIFF images, include subfolders
results = PNConverter.ConvertFolder(@"C:\Test\Input\", true,
 "*.*", "*.tif",
 @"C:\Test\Output\",
 true, // overwrite existing
 false, // do not remove file ext
 false, // do not create log
 "TIFF 200dpi OptimizedColor",
 String.Empty,
 String.Empty,
 null, // no custom user settings
 String.Empty, // not using DCOM
 String.Empty, // use default working folder
 String.Empty); // do not use custom log folder

Code Sample - VB.NET

Dim results As IList(Of PNConversionItem)

' Convert all files in C:\Test\Input except TIFF images, include subfolders
resulta = PNConverter.ConvertFolder("C:\Test\Input\", _
 "*.*", "*.tif", _
 "C:\Test\Output\"
 True, _
 False, _
 False, _
 "TIFF 200dpi OptimizedColor", _
 String.Empty, _
 String.Empty, _
 Nothing, _
 String.Empty, _
 String.Empty, _
 String.Empty)

CombineFiles

Description

Static method.

Converts and combines the list of files using the requested conversion settings.The files are combined
in the order in which they are given.

The conversion settings passed in determine how the files are combined. For instance, passing
conversion settings to create a multipaged PDF file will combine all input files into a single, multipage
PDF file, while passing in the conversion settings to create serialized TIFF images will result in a
serialized sequence of TIFF images, one for each page of each file.

Syntax

Document Conversion Service 3.0

299 Converting With PEERNET.ConvertUtility

PEERNET.ConvertUtility Namespace

PNConverter.CombineFiles(FileList, OutputFolder, OutputName,

 OverwriteExisting, CreateResultsLogFiles,

 SettingsProfile, ExtensionsProfile, MIMEProfile, UserSettings,

 RemoteComputerName, ConversionWorkingFolder,

 ConvertFileProcessLoggingPath)

PNConverter.CombineFiles(FileList, OutputFolder, OutputName,

 OverwriteExisting, CreateResultsLogFiles,

 SettingsList, ExtensionsProfile, MIMEProfile, UserSettings,

 RemoteComputerName, ConversionWorkingFolder,

 ConvertFileProcessLoggingPath)

PNConverter.CombineFiles(FileInfoList, OutputFolder, OutputName,

 OverwriteExisting, CreateResultsLogFiles,

 SettingsProfile, ExtensionsProfile, MIMEProfile, UserSettings,

 RemoteComputerName, ConversionWorkingFolder,

 ConvertFileProcessLoggingPath)

PNConverter.CombineFiles(FileInfoList, OutputFolder, OutputName,

 OverwriteExisting, CreateResultsLogFiles,

 SettingsList, ExtensionsProfile, MIMEProfile, UserSettings,

 RemoteComputerName, ConversionWorkingFolder,

 ConvertFileProcessLoggingPath)

Returns a PNCombineItem object which contains a collection of PNConversionResult objects, one for
each file in the supplied list of files added to the combined file. The PNCombineItem object contains a
list of files used in the combine process, and a list of the resulting combined files as well as other
information about the original combine request. Each inner PNConversionResult object contains
information about the conversion results for a file in the combine set passed.

Parameters

IList<PNConvertFileInfo> FileInfoList

A list of PNConvertFileInfo objects, in the desired order, to convert and add to the output file. Each
PNConvertFileInfo object describes a single input file to be converted and an optional collection of
converter settings to use when converting the file. The PNConvertFileInfo OutputPath property is
ignored, and the OutputFolder argument used instead.

Only the following converter settings are valid when combining files:

· General Converter Options
· Endorsement Options
· Word Converter Options
· Excel Converter Options
· PowerPoint Converter Options
· Adobe Reader Options
· Internet Explorer Options
· Ghostscript Converter Options
· Image Converter Options
· OutsideIn AX Options

300

Document Conversion Service 3.0

Converting With PEERNET.ConvertUtility

PEERNET.ConvertUtility Namespace

IList<String> FileList

A list of strings, in the desired order, representing the full paths of each file to convert and add to
the output file. The files can be on the local computer, on a shared location using a mapped drive
letter or by passing a UNC formatted file path.

String OutputFolder

Full path to the save file location. This folder must be specified and it must be created before the
call to CombineFiles is made. If the path doesn't exist or a file of the same name already exists in
the output folder location, the conversion will fail. Pass True for OverwriteExisting to allow file
overwriting.

String OutputName

The name to use for the output file, without extension. The default file extension for the type of
multipaged file being created will always be added to the name provided here. This argument
must be provided.

String OverwriteExisting

Set to True to overwrite existing files, or False to fail conversion when a file of the same name
already exists in the save location.

String CreateResultsLogFile

Pass True to create a results log file containing a complete snapshot of the conversion
information for each file. This file is saved with each output file. The name of the results log file is
based on the name of the original file and also indicates the conversion status for that file. For
example, when converting Sample.doc, a successful conversion will create
Sample.doc.succeeded.dcsresults and if the conversion did not succeed, the file would be named
Sample.doc.failed.dcsresults.

These log files can later be read from disk using the DeserializeFromXML method of the
PNConversionItem class.

String SettingsProfile

The name of the profile to use, with or without the XML extension. Settings in the profile that do
not apply to the type of output being created are ignored. Document Conversion Service includes
several sample profiles for common types of output files for your use, or you can create your own
and pass in a full path to your custom profile. See Creating and Customizing Profiles for a list of
included profiles and how to create your own.

IDictionary<String, String> SettingsList

A dictionary of name\value pairs of settings that describes the conversion options. Used instead of
SettingsProfile above. The name\value pairs that make up this dictionary are the same settings
that are used to create the XML-formatted profiles included with Document Conversion Service.
See Conversion Settings for a list of all of the settings that are available.

String ExtensionsProfile

Name of the file mapping profile XML file, with or without the XML extension. Providing this
parameter is optional and an internal default mapping is provided. You would only need to provide
this file if you wanted to override the default file extension to converter mappings provided.

String MimeProfile

Reserved for future use - pass String.Empty.

IDictionary<String, String> UserSettings

Optional. Pass a dictionary of additional conversion settings. These settings will override any
matching settings passed in for SettingsProfile or SettingsList. Pass null if not using.

Document Conversion Service 3.0

301 Converting With PEERNET.ConvertUtility

PEERNET.ConvertUtility Namespace

String RemoteComputerName

Optional. Pass String.Empty if you are converting locally or the name of the remote computer
where Document Conversion Service is running. When converting remotely, a
ConversionWorkingFolder must also be provided.

String ConversionWorkingFolder

Used to provide a shared path to be used when doing remote conversion or an alternate
temporary working instead of our default of the Windows TEMP folder.

This setting is required when RemoteComputerName is provided for remote conversion (DCOM)
as both the local and the remote computer need access to a shared path in which to do the
conversion. Pass String.Empty if you are not using this setting.

When not doing remote conversion, this setting is not required in most cases but can be useful
when dealing with folder and file names longer than 255 characters. When converting a file, the
conversion tool copies the file and performs the conversion in temporary staging and working
folders created on demand in the default Windows temp folder. These folders need to be less
than 255 characters as required by the underlying programs used by Document Conversion
Service to perform conversions. When dealing with these long path and file names the default
folders created can occasionally cause path names that are too long for Document Conversion
Service to process. When this happens this switch can be used to set the temporary folder to a
shorter path to allow processing. Again, pass String.Empty if you are not using this setting.

String ConvertFileProcessLoggingPath

Optional. Specify a path to a folder in which to store the SmartInspect logs files of any failed
conversions. These files are stored in the temp folder by default and can be viewed using the
SmartInspect Redistributable Console. These log files are a tracing of the entire conversion
process and are not the same as the conversion results log files created when a conversion fails.
See Controlling the SmartInspect Logging Files to change where these files are stored, how they
are named, or to disable creation of these files.

Remarks

In the case of a failed combine, the combine results log file is always created. When the combine
does not succeed, a .failed folder is created in the save folder location specified by OutputFolder
argument and the results log files are stored there.

The name of the results log when the combine does not succeed will be similar to the following:

PNCombineFiles_2013_05_31_2_50_05_PM_3.failed.dcsresults

The bold text in the name will change for each file and is based on the date and time of the run and an
internal counter. See Controlling the Failed Results File Location to store these files in a different
location, disable the use of the date and time in the name, or to disable the creation of these file.

Exceptions

Exception Condition

ArgumentException An empty, or badly formatted profile was passed for
SettingsProfile.
An empty list was passed for SettingsList.
An empty, or badly formatted profile was passed for
ExtensionsProfile.
An empty list was passed for FileList.
An empty name was passed for OutputName.

302

Document Conversion Service 3.0

Converting With PEERNET.ConvertUtility

PEERNET.ConvertUtility Namespace

A name for RemoteComputerName was passed but no
corresponding ConversionWorkingFolder specified.

FileNotFoundException One of the input files in the FileList does not exist or cannot be
accessed.

DirectoryNotFoundException The output path for OutputFolder is specified but the path does not
exist or is invalid.
When ConversionWorkingFolder is specified but does not exist or
is invalid.

See Also:

ConvertFile ConvertFileList ConvertFolder CombineFolder IsConversionServiceRunning

Code Sample - C# - Combine both files into a multipage TIFF image

PNCombineItem resultItem = null;
IList<String> filesToTIFF = new List<String>();

filesToTIFF.Add(@"C:\Test\File1.pdf");
filesToTIFF.Add(@"C:\Test\File2.pdf");

resultItem = PNConverter.CombineFiles(filesToTIFF,
 @"C:\Test\Output\",
 @"CombinedPDF",
 true, // overwrite existing
 false, // do not create log
 "TIFF 200dpi OptimizedColor",
 String.Empty,
 String.Empty,
 null, // no custom user settings
 String.Empty, // not using DCOM
 String.Empty, // use default working folder
 String.Empty); // do not use custom log folder

Code Sample - VB.NET - Combine both files into a multipage TIFF image

Dim resultItem As PNCombineItem
Dim filesToTIFF As IList(Of String)

resultItem = Nothing

filesToTIFF.Add("C:\Test\File1.pdf")
filesToTIFF.Add("C:\Test\File2.pdf")

resultItem = PNConverter.CombineFiles(filesToTIFF, _
 "C:\Test\Output\", _
 "CombinedPDF", _
 True, _
 False, _
 "TIFF 200dpi OptimizedColor", _
 String.Empty, _
 String.Empty, _
 Nothing, _
 String.Empty, _
 String.Empty, _
 String.Empty)

Document Conversion Service 3.0

303 Converting With PEERNET.ConvertUtility

PEERNET.ConvertUtility Namespace

CombineFolder

Description

Static method.

Converts and combines all files in the folder, and optionally all subfolders, using the requested
conversion settings.

The order of the files in the combined file cannot be guaranteed and is dependent on the file system.
In most cases they are alphabetical but can also be by creation time. Files from the root of the input
folder are listed first, then all files from the subfolders when enabled. Subfolders are listed in
alphabetical or creation time order, again dependent on the file system.

A filter pattern can be used to only process files in the folder that match the provided pattern, such as
.doc to process all Word documents, or ABC to process all files that start with the letters ABC. An
exclude filter is also provided, to allow you to skip files that match the exclude pattern. The exclude
filter is applied to the list of files returned by the include filter.

The conversion settings passed in determine how the files are combined. For instance, passing
conversion settings to create a multipaged PDF file will combine all input files into a single, multipage
PDF file, while passing in the conversion settings to create serialized TIFF images will result in a
serialized sequence of TIFF images, one for each page of each file.

Syntax

PNConverter.CombineFolder(InputFolder, IncludeSubFolders,

 FileFilter, ExcludeFileFilter,

 OutputFolder, OutputName, OverwriteExisting,

 CreateResultsLogFiles, SettingsProfile,

 ExtensionsProfile, MIMEProfile, UserSettings,

 RemoteComputerName, ConversionWorkingFolder,

 CombineFilesProcessLoggingPath)

PNConverter.CombineFolder(InputFolder, IncludeSubFolders,

 FileFilter, ExcludeFileFilter,

 OutputFolder, OutputName, OverwriteExisting,

 CreateResultsLogFiles, SettingsProfile,

 ExtensionsProfile, MIMEProfile, UserSettings,

 RemoteComputerName, ConversionWorkingFolder,

 CombineFilesProcessLoggingPath,

 SortMode, SortOrder)

PNConverter.CombineFolder(InputFolder, IncludeSubFolders,

 FileFilter, ExcludeFileFilter,

 OutputFolder, OutputName, OverwriteExisting,

 CreateResultsLogFiles, SettingsList,

 ExtensionsProfile, MIMEProfile, UserSettings,

 RemoteComputerName, ConversionWorkingFolder,

 CombineFilesProcessLoggingPath)

PNConverter.CombineFolder(InputFolder, IncludeSubFolders,

304

Document Conversion Service 3.0

Converting With PEERNET.ConvertUtility

PEERNET.ConvertUtility Namespace

 FileFilter, ExcludeFileFilter,

 OutputFolder, OutputName, OverwriteExisting,

 CreateResultsLogFiles, SettingsList,

 ExtensionsProfile, MIMEProfile, UserSettings,

 RemoteComputerName, ConversionWorkingFolder,

 CombineFilesProcessLoggingPath,

 SortMode, SortOrder)

Returns a PNCombineItem object which contains a collection of PNConversionResult objects, one for
each file in the folder (and subfolders, if selected) that matched the filter pattern. The PNCombineItem
object contains a list of files used in the combine process, and a list of the resulting combined files as
well as other information about the original combine request. Each inner PNConversionResult object
contains information about the conversion results for a file in the combine set passed.

Parameters

String InputFolder

The full path to the folder containing the files to convert and combine together. This can be on the
local computer, on a shared location using a mapped drive letter or by passing a UNC formatted
file path.

String IncludeSubFolders

Set to True to include the subfolders under the folder when building the list of files to be converted
and combined.

String FileFilter

A filter to process only the files matching the filter pattern, such as using *.pdf to only process files
ending with the .PDF or .pdf extension. Multiple filters can be combined using the pipe (|)
character, such as *.doc|*.pdf to process only Word and PDF files.

Hidden and system files are ignored, and the search pattern filters files based on a regular
expression match of the long name of a file. The filter defaults to all files in the folder (*.*) if
String.Empty or null are passed for the filter.

String ExcludeFileFilter

After the Filter pattern is used to get the list of files to convert from the InputFolder, the exclude
filter can then be applied to that list to remove files that match the exclude pattern. Multiple
excluded filters are combined using the pipe (|) character, such as *.pdf|*.xml to process all files
returned except PDF and XML files.

If String.Empty or null is passed then no files are excluded.

String OutputFolder

Full path to the save file location. This folder must be specified and it must be created before the
call to CombineFolder is made. If the path doesn't exist or a file of the same name already exists
in the output folder location, the conversion will fail. Pass True for OverwriteExisting to allow file
overwriting.

String OutputName

The name to use for the output file, without extension. The default file extension for the type of
multipaged file being created will always be added to the name provided here. This argument
must be provided.

String OverwriteExisting

Document Conversion Service 3.0

305 Converting With PEERNET.ConvertUtility

PEERNET.ConvertUtility Namespace

Set to True to overwrite existing files, or False to fail conversion when a file of the same name
already exists in the save location.

String CreateResultsLogFile

Pass True to create a results log file containing a complete snapshot of the conversion
information for each file. This file is saved with each output file. The name of the results log file is
based on the name of the original file and also indicates the conversion status for that file. For
example, when converting Sample.doc, a successful conversion will create
Sample.doc.succeeded.dcsresults and if the conversion did not succeed, the file would be named
Sample.doc.failed.dcsresults.

These log files can later be read from disk using the DeserializeFromXML method of the
PNConversionItem class.

String SettingsProfile

The name of the profile to use, with or without the XML extension. Settings in the profile that do
not apply to the type of output being created are ignored. Document Conversion Service includes
several sample profiles for common types of output files for your use, or you can create your own
and pass in a full path to your custom profile. See Creating and Customizing Profiles for a list of
included profiles and how to create your own.

IDictionary<String, String> SettingsList

A dictionary of name\value pairs of settings that describes the conversion options. Used instead of
SettingsProfile above. The name\value pairs that make up this dictionary are the same settings
that are used to create the XML-formatted profiles included with Document Conversion Service.
See Conversion Settings for a list of all of the settings that are available.

String ExtensionsProfile

Name of the file mapping profile XML file, with or without the XML extension. Providing this
parameter is optional and an internal default mapping is provided. You would only need to provide
this file if you wanted to override the default file extension to converter mappings provided.

String MimeProfile

Reserved for future use - pass String.Empty.

IDictionary<String, String> UserSettings

Optional. Pass a dictionary of additional conversion settings. These settings will override any
matching settings passed in for SettingsProfile or SettingsList. Pass null if not using.

String RemoteComputerName

Optional. Pass String.Empty if you are converting locally or the name of the remote computer
where Document Conversion Service is running. When converting remotely, a
ConversionWorkingFolder must also be provided.

String ConversionWorkingFolder

Used to provide a shared path to be used when doing remote conversion or an alternate
temporary working instead of our default of the Windows TEMP folder.

This setting is required when RemoteComputerName is provided for remote conversion (DCOM)
as both the local and the remote computer need access to a shared path in which to do the
conversion. Pass String.Empty if you are not using this setting.

When not doing remote conversion, this setting is not required in most cases but can be useful
when dealing with folder and file names longer than 255 characters. When converting a file, the
conversion tool copies the file and performs the conversion in temporary staging and working
folders created on demand in the default Windows temp folder. These folders need to be less

306

Document Conversion Service 3.0

Converting With PEERNET.ConvertUtility

PEERNET.ConvertUtility Namespace

than 255 characters as required by the underlying programs used by Document Conversion
Service to perform conversions. When dealing with these long path and file names the default
folders created can occasionally cause path names that are too long for Document Conversion
Service to process. When this happens this switch can be used to set the temporary folder to a
shorter path to allow processing. Again, pass String.Empty if you are not using this setting.

String ConvertFileProcessLoggingPath

Optional. Specify a path to a folder in which to store the SmartInspect logs files of any failed
conversions. These files are stored in the temp folder by default and can be viewed using the
SmartInspect Redistributable Console. These log files are a tracing of the entire conversion
process and are not the same as the conversion results log files created when a conversion fails.
See Controlling the SmartInspect Logging Files to change where these files are stored, how they
are named, or to disable creation of these files.

PNFileSortMode SortMode

Optional, controls the sort order of the list of files returned from the InputFolder. Files can be
sorted by name, date created or date modified. Default is None when not specfied.

PNFileSortOrder SortOrder

Optional, returns the files in Ascending (0-9, A-Z) or Descending (Z-A, 9-0) order. Default is
Ascending when not specified.

Remarks

In the case of a failed combine, the combine results log file is always created. When the combine
does not succeed, a .failed folder is created in the save folder location specified by OutputFolder
argument and the results log files are stored there.

The name of the results log when the combine does not succeed will be similar to the following:

PNCombineFolder_2013_05_31_2_50_05_PM_3.failed.dcsresults

The bold text in the name will change for each file and is based on the date and time of the run and an
internal counter. See Controlling the Failed Results File Location to store these files in a different
location, disable the use of the date and time in the name, or to disable the creation of these file.

Exceptions

Exception Condition

ArgumentException An empty, or badly formatted profile was passed for
SettingsProfile.
An empty list was passed for SettingsList.
An empty, or badly formatted profile was passed for
ExtensionsProfile.
The folder did not contain any files to process, or the filtered list of
files returned an empty list.
An empty name was passed for OutputName.
A name for RemoteComputerName was passed but no
corresponding ConversionWorkingFolder specified.

FileNotFoundException One of the files found to process was removed or cannot be
accessed when conversion was attempted.

DirectoryNotFoundException The output path for OutputFolder is specified but the path does not
exist or is invalid.

Document Conversion Service 3.0

307 Converting With PEERNET.ConvertUtility

PEERNET.ConvertUtility Namespace

When ConversionWorkingFolder is specified but does not exist or
is invalid.

See Also:

ConvertFile ConvertFileList ConvertFolder CombineFiles IsConversionServiceRunning

Code Sample - C# - Combine files in C:\Input to multipage PDF document

PNCombineItem resultItem = null;

resultItem = PNConverter.CombineFolder(@"C:\Test\Input\",
 false, // do not include subfolders
 @"*.*", // process all files
 String.Empty, // do not exclude any files
 @"C:\Test\Output\",
 @"CombinedPDF",
 true, // overwrite existing
 false, // do not create log
 "PDF 200dpi OptimizedColor",
 String.Empty,
 String.Empty,
 null, // no custom user settings
 String.Empty, // not using DCOM
 String.Empty, // use default working folder
 String.Empty, // do not use custom log folder
 PNFileSortMode.DateCreated,
 PNFileSortOrder.Ascending);

Code Sample - VB.NET - Combine files in C:\Input to multipage PDF document

Dim resultItem As PNCombineItem
resultItem = Nothing

resultItem = PNConverter.ConvertFolder("C:\Test\Input\", _
 False, _
 "*.*", _
 String.Empty, _
 "C:\Test\Output\", _
 "CombinedPDF", _
 True, _
 False, _
 "PDF 200dpi OptimizedColor", _
 String.Empty, _
 String.Empty, _
 Nothing, _
 String.Empty, _
 String.Empty, _
 String.Empty, _
)

IsConversionServiceRunning

Description

Test if Document Conversion Service is running and ready to convert.

308

Document Conversion Service 3.0

Converting With PEERNET.ConvertUtility

PEERNET.ConvertUtility Namespace

Syntax

PNConverter.IsConversionServiceRunning(ComputerName)

Returns True if Document Conversion Service is running and ready to convert a file, False otherwise.

Parameters

String ComputerName

If you are running Document Conversion Service locally, pass String.Empty to test if the service is
running. If Document Conversion Service is running on a remote computer, pass the name of that
computer to test the state of the conversion service on that computer.

See Also:

ConvertFile ConvertFileList ConvertFolder CombineFiles

Document Conversion Service 3.0

309 Converting With PEERNET.ConvertUtility

PEERNET.ConvertUtility Namespace

PNConvertFileInfo

Description

The PNConvertFileInfo class describes a single input file to be converted, the output path for that file
and an optional collection of settings to use when converting the file. It is used to pass collections of
files to the ConvertFileList method to be converted.

Methods

 PNConvertFileInfo Initializes a new instance of the PNConvertFileInfo object.

 AddSetting Adds a setting to a PNConvertFileInfo object.

Properties

 InputFile Gets or sets the full path to the input file to be converted.

 OutputPath Gets or sets the full path to the output folder in which to save the new
file.

 Settings Optional. A collection of conversion settings that will apply only to this
file.

Methods

AddSetting

Description

Add a PNSetting object into the IList collection of PNSetting objects.. You can add any number of
settings into the collection. If the same setting is added more than once, the last setting in the
collection is the one that will be used.

Syntax

expression.AddSetting(setting)

where expression is a PNConvertFileInfo object.

Parameters

PNSetting setting

The setting to add.

See Also:

310

Document Conversion Service 3.0

Converting With PEERNET.ConvertUtility

PEERNET.ConvertUtility Namespace

PNConvertFileInfo PNSetting

PNConvertFileInfo

Description

Initializes an instance of the PNConvertFileInfo object with an input file, the desired output folder and
an optional collection of conversion settings to use when converting the input file. This class is used to
pass collections of files to the ConvertFileList method to be converted.

Syntax

PNConvertFileInfo(inputFile,outputPath)

PNConvertFileInfo(inputFile, outputPath, settings)

Parameters

String inputFile

The full path to the input file to be converted. This can be on the local computer, on a shared
location using a mapped drive letter or by passing a UNC formatted file path.

String outputPath

Full path to the save file location, or String.Empty to create the new file in the same location as
inputFile.

This folder must be created before the call to ConvertFileList is made. If the path doesn't exist or a
file of the same name already exists in the save file location, the conversion will fail. Pass True for
OverwriteExisting to allow file overwriting.

IList<PNSetting> settings

A collection of conversion settings to use when converting the file. These conversion settings will
apply only to inputFile.

See Also:

AddSetting

Properties

InputFile

Description

Gets or sets the full path to the input file to be converted. This can be on the local computer, on a
shared location using a mapped drive letter or by passing a UNC formatted file path.

Syntax

Document Conversion Service 3.0

311 Converting With PEERNET.ConvertUtility

PEERNET.ConvertUtility Namespace

expression.InputFile

where expression is a PNConvertFileInfo object.

Returns a String.

See Also:

OutputPath Settings

OutputPath

Description

Gets or sets the full path to the output folder in which to save the converted file. This can be on the
local computer, on a shared location using a mapped drive letter or by passing a UNC formatted file
path.

Syntax

expression.OutputPathe

where expression is a PNConvertFileInfo object.

Returns a String.

See Also:

InputFile Settings

Settings

Description

An list of conversion options that will apply only to this file. This collection is optional and can be empty
or null.

Syntax

expression.Settings

where expression is a PNConvertFileInfo object.

Returns an IList<PNSetting> collection.

See Also:

InputFile OutputPath

312

Document Conversion Service 3.0

Converting With PEERNET.ConvertUtility

PEERNET.ConvertUtility Namespace

PNConversionItem

Description

The PNConversionItem class contains information about the original conversion request and the
results of the conversion in an inner PNConversionResult property. This class is used by ConvertFile,
ConvertFileList and ConvertFolder to return the results of document conversion.

This is also the class that is serialized to disk to create the results log files that can optionally be
created by the ConvertFile, ConvertFileList and ConvertFolder methods. Several static methods for
extracting information from the results log files on disk are provided.

Static Methods

 DeserializeFromXML Deserialize the conversion results from a PNConversionItem
serialized to disk as XML.

 GetCreatedFiles Returns a list of the files created from a PNConversionItem
serialized to disk as XML.

 GetErrors Returns a list of the errors from a PNConversionItem serialized
to disk as XML.

 GetSourceFileName Returns the source file used from a PNConversionItem
serialized to disk as XML.

Methods

 GetConversionStatus Returns the conversion status as one of
PNConvertResultStatus strings.

 HasErrors Returns True if errors occurred during the conversion, False
otherwise.

 SerializeToXML Serialize the conversion results to a file on disk.

Properties

 ConversionResult Read-only; A PNConvertResultStatus string enumeration of the
conversion status.

 ConversionLogFilePath Read-only; the path to the logging file for this conversion item.

 ConversionResultsFilePath Read-only; the path to the .dcsresults file for this conversion
item.

Document Conversion Service 3.0

313 Converting With PEERNET.ConvertUtility

PEERNET.ConvertUtility Namespace

 ConverterPlugInList Read-only; The list of converters that Document Conversion
Service chose from to convert the file.

 OutputBaseName Read-only; The base name used to name the converted files.

 OutputDirectory Read-only; The directory in which the converted files were
created.

 Settings Read-only; A List<PNSetting> collection of the conversion
settings used to create the output files.

 SourceFileExtension Read-only; The extension of the source file that was used to
determine what converter Document Conversion Service used
to convert the file.

 SourceFileMimeType Reserved for future use.

 SourceFilePath Read-only; The source file that was converted.

Methods

DeserializeFromXML

Description

Static method.

Deserializes a PNConversionItem serialized to disk as XML.

The file passed can be a results log file ending in the .dcsresults extension created by enabling the
results log file option when calling ConvertFile, ConvertFileList or ConvertFolder, or a file on disk
created by calling SerializeToXML.

Syntax

PNConversionItem.DeserializeFromXML(FilePath)

Returns a PNConversionItem object.

Parameters

String FilePath

Full path to the file.

See Also:

GetCreatedFiles GetErrors GetSourceFileName

314

Document Conversion Service 3.0

Converting With PEERNET.ConvertUtility

PEERNET.ConvertUtility Namespace

GetConversionStatus

Description

Returns the conversion status.

Syntax

expression.GetConversionStatus(path)

where expression is a PNConversionItem object.

Returns conversion status as a PNConvertResultStatus.

See Also:

HasErrors SerializeToXML

GetCreatedFiles

Description

Static method.

Given a path to a PNConversionItem serialized to disk as XML, returns a list of the files created. This
list can be empty if no files were created.

The file passed can be a results log file ending in the .dcsresults extension created by enabling the
results log file option when calling ConvertFile, ConvertFileList or ConvertFolder, or a file on disk
created by calling SerializeToXML.

Syntax

PNConversionItem.GetCreatedFiles(path)

Returns List<String> of the paths to the created files.

Parameters

String path

Full path to the file.

See Also:

DeserializeFromXML GetErrors GetSourceFileName

Document Conversion Service 3.0

315 Converting With PEERNET.ConvertUtility

PEERNET.ConvertUtility Namespace

GetErrors

Description

Static method.

Given a path to a PNConversionItem serialized to disk as XML, returns a list of any errors
encountered during conversion. This list can be empty if no errors occurred.

The file passed can be a results log file ending in the .dcsresults extension created by enabling the
results log file option when calling ConvertFile, ConvertFileList or ConvertFolder, or a file on disk
created by calling SerializeToXML.

Syntax

PNConversionItem.GetErrors(path)

Returns List<String> of error messages.

Parameters

String path

Full path to the file.

See Also:

DeserializeFromXML GetCreatedFiles GetSourceFileName

GetSourceFileName

Description

Static method.

Given a path to a PNConversionItem serialized to disk as XML, returns the name of the file that was
converted.

The file passed can be a results log file ending in the .dcsresults extension created by enabling the
results log file option when calling ConvertFile, ConvertFileList or ConvertFolder, or a file on disk
created by calling SerializeToXML.

Syntax

PNConversionItem.GetSourceFileName(path)

Returns a String.

Parameters

String path

316

Document Conversion Service 3.0

Converting With PEERNET.ConvertUtility

PEERNET.ConvertUtility Namespace

Full path to the file.

See Also:

DeserializeFromXML GetCreatedFiles GetSourceFileName

HasErrors

Description

Returns True if errors occurred during the conversion, False otherwise.

Syntax

expression.HasErrors()

where expression is a PNConversionItem object.

Returns a Boolean.

See Also:

GetConversionStatus SerializeToXML

SerializeToXML

Description

Serializes the PNConversionItem to an XML file on disk.

Syntax

expression.SerializeToXML(FilePath)

where expression is a PNConversionItem object.

Parameters

String FilePath

Full path to the file to create, including the filename.

See Also:

GetConversionStatus HasErrors

Document Conversion Service 3.0

317 Converting With PEERNET.ConvertUtility

PEERNET.ConvertUtility Namespace

Properties

ConversionResult

Description

Gets the PNConversionResult object describing the results of the conversion.

Read-only.

Syntax

expression.ConversionResult

where expression is a PNConversionItem object.

Returns PNConversionResult.

See Also:

ConversionLogFilePath ConversionResultsFilePath ConverterPlugInList

OutputBaseName OutputDirectory Settings

SourceFileExtension SourceFileMimeType SourceFilePath

ConversionLogFilePath

Description

The path to the Smart Inspect console logging file (*.sil). This file is always created when a conversion
runs. If the conversion is successful, the log file is normally deleted. If it fails, it is kept and copied to
the Windows temp folder. The General Converter Options variables
KeepFailedProcessingLoggingFiles and AlwaysKeepProcessingLoggingFiles allow you to control if
this file is always kept or always deleted. See Controlling the SmartInspect Logging Files to change
where these files are stored, how they are named, or to disable creation of these files.

Read-only.

Syntax

expression.ConversionLogFilePath

where expression is a PNConversionItem object.

Returns String.

See Also:

ConversionResult ConversionResultsFilePath ConverterPlugInList

OutputBaseName OutputDirectory Settings

SourceFileExtension SourceFileMimeType SourceFilePath

318

Document Conversion Service 3.0

Converting With PEERNET.ConvertUtility

PEERNET.ConvertUtility Namespace

ConversionResultsFilePath

Description

The path to the results file (*.dcsresults) that is created when a conversion fails. The General
Converter Options variables KeepFailedItemResultsFiles control if this file is kept for failed items. See
Controlling the Failed Results File Location to change where these files are stored, how they are
named, or to disable creation of these files.

Read-only.

Syntax

expression.ConversionResultsFilePath

where expression is a PNConversionItem object.

Returns String.

See Also:

ConversionResult ConversionLogFilePath ConverterPlugInList

OutputBaseName OutputDirectory Settings

SourceFileExtension SourceFileMimeType SourceFilePath

ConverterPlugInList

Description

The list of converters that Document Conversion Service chose from to convert the file. This can be a
single converter, or as some file types can be converted using more that one converter, it can be a list
of converters.

Read-only.

Syntax

expression.ConverterPlugInList

where expression is a PNConversionItem object.

Returns String.

See Also:

ConversionResult ConversionLogFilePath ConversionResultsFilePath

OutputBaseName OutputDirectory Settings

SourceFileExtension SourceFileMimeType SourceFilePath

Document Conversion Service 3.0

319 Converting With PEERNET.ConvertUtility

PEERNET.ConvertUtility Namespace

OutputBaseName

Description

The base name used to name the output files.

Read-only.

Syntax

expression.OutputBaseName

where expression is a PNConversionItem object.

Returns String.

See Also:

ConversionResult ConversionLogFilePath ConversionResultsFilePath

ConverterPlugInList OutputDirectory Settings

SourceFileExtension SourceFileMimeType SourceFilePath

OutputDirectory

Description

Gets the directory in which the converted files were created. This can be an empty string if no output
directory was specified.

Read-only.

Syntax

expression.OutputDirectory

where expression is a PNConversionItem object.

Returns String.

See Also:

ConversionResult ConversionLogFilePath ConversionResultsFilePath

ConverterPlugInList OutputBaseName Settings

SourceFileExtension SourceFileMimeType SourceFilePath

Settings

Description

A collection of the conversion settings used to create the output files.

320

Document Conversion Service 3.0

Converting With PEERNET.ConvertUtility

PEERNET.ConvertUtility Namespace

Read-only.

Syntax

expression.Settings

where expression is a PNConversionItem object.

Returns an List<PNSetting> collection.

See Also:

ConversionResult ConversionLogFilePath ConversionResultsFilePath

ConverterPlugInList OutputBaseName OutputDirectory

SourceFileExtension SourceFileMimeType SourceFilePath

SourceFileExtension

Description

Gets the extension of the source file that was used to determine what converter Document Conversion
Service used to convert the file.

Read-only.

Syntax

expression.SourceFileExtension

where expression is a PNConversionItem object.

Returns a String.

See Also:

ConversionResult ConversionLogFilePath ConversionResultsFilePath

ConverterPlugInList OutputBaseName OutputDirectory

Settings SourceFileMimeType SourceFilePath

SourceFileMimeType

Description

Reserved for future use.

SourceFilePath

Description

Document Conversion Service 3.0

321 Converting With PEERNET.ConvertUtility

PEERNET.ConvertUtility Namespace

The full path to the source file that was converted.

Read-only.

Syntax

expression.SourceFilePath

where expression is a PNConversionItem object.

Returns a String.

See Also:

ConversionResult ConversionLogFilePath ConversionResultsFilePath

ConverterPlugInList OutputBaseName OutputDirectory

Settings SourceFileExtension SourceFileMimeType

322

Document Conversion Service 3.0

Converting With PEERNET.ConvertUtility

PEERNET.ConvertUtility Namespace

PNCombineItem

Description

The PNCombineItem class contains information about the original file combine (append) request, a list
of the output files created, and an inner list of PNConversionResult items for each file included as part
of the combine operation.

This class is used by the CombineFiles method to return the results of document conversion and
combination.

This is also the class that is serialized to disk to create the results log files that can optionally be
created by the CombineFiles method. Several static methods for extracting information from the
results log files on disk are provided.

Static Methods

 DeserializeFromXML Deserialize the conversion results from a PNCombineItem
serialized to disk as XML.

 GetCreatedFiles Given a PNCombineItem serialized to disk as XML, returns a
list of the files created in the results.

 GetErrors Given a PNCombineItem serialized to disk as XML, returns a
list of any errors in the results.

 GetInputFileNames Given a PNCombineItem serialized to disk as XML, returns the
list of source files passed to be combined together.

Methods

 HasErrors Returns True if errors occurred during the conversion, False
otherwise.

 SerializeToXML Serialize the file combine results to a file on disk.

Properties

 CombinedOutputFileList Read-only; The list of files created; this can be one or more
depending on the output format chosen.

 ConversionItems Read-only; The list of PNConversionResult items for each file
in the combine set.

 ConversionLogFilePath Read-only; the path to the logging file for this combination
item.

Document Conversion Service 3.0

323 Converting With PEERNET.ConvertUtility

PEERNET.ConvertUtility Namespace

 ConversionResultsFilePath Read-only; the path to the .dcsresults file for this combination
item.

 Errors Read-only; A collection of any errors that occurred during the
convert and combine process.

 InputFiles Read-only; The collection of source files used as input into the
combine call.

 OutputBaseName Read-only; The base name used to name the combined file or
files.

 OutputDirectory Read-only; The directory in which the combined file or files
were created.

 Settings Read-only; A List<PNSetting> collection of the conversion
settings used to create the output files.

Methods

DeserializeFromXML

Description

Static method.

Deserializes a PNCombineItem object that was serialized to disk as XML.

The XML file passed in must be a results log file ending in the .dcsresults extension created by
enabling the results log file option when calling CombineFiles, or a file on disk created by calling
SerializeToXML.

Syntax

PNCombineItem.DeserializeFromXML(FilePath)

Returns a PNCombineItem object.

Parameters

String FilePath

Full path to the file.

See Also:

GetCreatedFiles GetErrors GetInputFileNames

324

Document Conversion Service 3.0

Converting With PEERNET.ConvertUtility

PEERNET.ConvertUtility Namespace

GetCreatedFiles

Description

Static method.

Given a path to a PNCombineItem serialized to disk as XML, returns a list of the files created. This list
can be empty if no files were combined.

The XML file passed in must be a results log file ending in the .dcsresults extension created by
enabling the results log file option when calling CombineFiles, or a file on disk created by calling
SerializeToXML.

Syntax

PNCombineItem.GetCreatedFiles(path)

Returns List<String> of the paths to the created files.

Parameters

String path

Full path to the file.

See Also:

DeserializeFromXML GetErrors GetInputFileNames

GetErrors

Description

Static method.

Given a path to a PNCombineItem, serialized to disk as XML, returns a list of any errors encountered
during conversion. This list can be empty if no errors occurred.

The XML file passed in must be a results log file ending in the .dcsresults extension created by
enabling the results log file option when calling CombineFiles, or a file on disk created by calling
SerializeToXML.

Syntax

PNConversionItem.GetErrors(path)

Returns List<String> of error messages.

Parameters

String path

Document Conversion Service 3.0

325 Converting With PEERNET.ConvertUtility

PEERNET.ConvertUtility Namespace

Full path to the file.

See Also:

DeserializeFromXML GetCreatedFiles GetInputFileNames

GetInputFileNames

Description

Static method.

Given a path to a PNCombineItem serialized to disk as XML, returns a list of the source files that were
passed to be combined together.

The XML file passed in must be a results log file ending in the .dcsresults extension created by
enabling the results log file option when calling CombineFiles, or a file on disk created by calling
SerializeToXML.

Syntax

PNCombineItem.GetSourceFileName(path)

Returns List<String> of the paths to the input files used for the combine.

Parameters

String path

Full path to the file.

See Also:

DeserializeFromXML GetCreatedFiles GetErrors

HasErrors

Description

Returns True if errors occurred during the conversion, False otherwise.

Syntax

expression.HasErrors()

where expression is a PNCombineItem object.

Returns a Boolean.

326

Document Conversion Service 3.0

Converting With PEERNET.ConvertUtility

PEERNET.ConvertUtility Namespace

See Also:

SerializeToXML

SerializeToXML

Description

Serializes the PNCombineItem to an XML file on disk.

Syntax

expression.SerializeToXML(FilePath)

where expression is a PNCombineItem object.

Parameters

String FilePath

Full path to the file to create, including the filename.

See Also:

HasErrors

Properties

CombinedOutputFileList

Description

The list of the files created. This list can be empty if no files were combined.

Read-only.

Syntax

expression.CombinedOutpoutFileList

where expression is an PNCombineItem object.

Returns a List<String> collection.

See Also:

ConversionItems ConversionLogFilePath ConversionResultsFilePath

Errors InputFiles OutputBaseName OutputDirectory Settings

Document Conversion Service 3.0

327 Converting With PEERNET.ConvertUtility

PEERNET.ConvertUtility Namespace

ConversionItems

Description

The collection of PNConversionResult objects, one for each of the files in the combine set. This list
can be empty if no files were combined.

Read-only.

Syntax

expression.ConversionItems

where expression is an PNCombineItem object.

Returns a List<PNConversionResult> collection.

See Also:

CombinedOutputFileList ConversionLogFilePath ConversionResultsFilePath

Errors InputFiles OutputBaseName OutputDirectory Settings

ConversionLogFilePath

Description

The path to the Smart Inspect console logging file (*.sil). This file is always created when the convert
and combine runs. If the convert and combine is successful, the log file is normally deleted. If it fails, it
is kept and copied to the Windows temp folder. The General Converter Options variables
KeepFailedProcessingLoggingFiles and AlwaysKeepProcessingLoggingFiles allow you to control if
this file is always kept or always deleted. See Controlling the SmartInspect Logging Files to change
where these files are stored, how they are named, or to disable creation of these files.

Read-only.

Syntax

expression.ConversionLogFilePath

where expression is an PNCombineItem object.

Returns String.

See Also:

CombinedOutputFileList ConversionItems ConversionResultsFilePath

Errors InputFiles OutputBaseName OutputDirectory Settings

ConversionResultsFilePath

Description

328

Document Conversion Service 3.0

Converting With PEERNET.ConvertUtility

PEERNET.ConvertUtility Namespace

The path to the results file (*.dcsresults) that is created when a conversion fails. The General
Converter Options variables KeepFailedItemResultsFiles control if this file is kept for failed items. See
Controlling the Failed Results File Location to change where these files are stored, how they are
named, or to disable creation of these files.

Read-only.

Syntax

expression.ConversionResultsFilePath

where expression is an PNCombineItem object.

Returns String.

See Also:

CombinedOutputFileList ConversionItems ConversionLogFilePath

Errors InputFiles OutputBaseName OutputDirectory Settings

Errors

Description

A collection of any errors that occurred during conversion.

Read-only.

Syntax

expression.Errors

where expression is an PNCombineItem object.

Returns a List<PNConversionResultError> collection.

See Also:

CombinedOutputFileList ConversionItems ConversionLogFilePath ConversionResultsFilePath

InputFiles OutputBaseName OutputDirectory Settings

InputFiles

returns a list of the source files that were passed to be combined together.

Description

A list of the input files passed in to be combined together.

Read-only.

Document Conversion Service 3.0

329 Converting With PEERNET.ConvertUtility

PEERNET.ConvertUtility Namespace

Syntax

expression.InputFiles

where expression is an PNCombineItem object.

Returns a List<String> collection.

See Also:

CombinedOutputFileList ConversionItems ConversionLogFilePath ConversionResultsFilePath

Errors OutputBaseName OutputDirectory Settings

OutputBaseName

Description

The base name used to name the output files.

Read-only.

Syntax

expression.OutputBaseName

where expression is a PNCombineItem object.

Returns String.

See Also:

CombinedOutputFileList ConversionItems ConversionLogFilePath ConversionResultsFilePath

Errors InputFiles OutputDirectory Settings

OutputDirectory

Description

Gets the directory in which the combined file was created.

Read-only.

Syntax

expression.OutputDirectory

where expression is a PNCombineItem object.

Returns String.

330

Document Conversion Service 3.0

Converting With PEERNET.ConvertUtility

PEERNET.ConvertUtility Namespace

See Also:

CombinedOutputFileList ConversionItems ConversionLogFilePath ConversionResultsFilePath

Errors InputFiles OutputBaseName Settings

Settings

Description

A collection of the conversion settings used to create the combined file.

Read-only.

Syntax

expression.Settings

where expression is a PNCombineItem object.

Returns an List<PNSetting> collection.

See Also:

CombinedOutputFileList ConversionItems ConversionLogFilePath ConversionResultsFilePath

Errors InputFiles OutputBaseName OutputDirectory

Document Conversion Service 3.0

331 Converting With PEERNET.ConvertUtility

PEERNET.ConvertUtility Namespace

PNConversionResult

Description

The PNConversionResult class describes the results of the conversion. This class contains the list of
files created, any informational messages and any error messages that occurred during conversion.

Properties

 Completed Read-only; The time at which the conversion was completed.

 ConverterPlugInUsed Read-only; The converter that was used by Document
Conversion Service to convert the file.

 Errors Read-only; A collection of any errors that occurred during
conversion.

 Messages Read-only; A collection of any informational messages returned.

 OutputFileRenderedPages Read-only; A collection of information about each page created
in the converted file.

 OutputFiles Read-only; A list of the files created.

 PrintJobPrintedPages Read-only; A collection of information about each page that was
printed to create the converted file.

 PrintJobs Read-only; A list of all print jobs that resulted from converting
this file.

 Submitted Read-only; The time at which the conversion request was
submitted to Document Conversion Service.

Properties

Completed

Description

Returns the time this document conversion was completed.

Read-only.

Syntax

expression.Completed

where expression is an PNConversionResult object.

Returns a DateTime object.

332

Document Conversion Service 3.0

Converting With PEERNET.ConvertUtility

PEERNET.ConvertUtility Namespace

See Also:

ConverterPlugInUsed Errors Messages OutputFileRenderedPages

OutputFiles PrintJobPrintedPages PrintJobs Submitted

ConverterPlugInUsed

Description

Returns the name of the converter that was used by Document Conversion Service to convert the file.
This will be one of the converters listed in the ConverterPlugInList property of the PNConversionItem
parent object.

Read-only.

Syntax

expression.ConverterPlugInUsed

where expression is an PNConversionResult object.

Returns a String.

See Also:

Completed Errors Messages OutputFileRenderedPages

OutputFiles PrintJobPrintedPages PrintJobs Submitted

Errors

Description

A collection of any errors that occurred during conversion.

Read-only.

Syntax

expression.Errors

where expression is an PNConversionResult object.

Returns a List<PNConversionResultError> collection.

See Also:

Completed ConverterPlugInUsed Messages OutputFileRenderedPages

OutputFiles PrintJobPrintedPages PrintJobs Submitted

Document Conversion Service 3.0

333 Converting With PEERNET.ConvertUtility

PEERNET.ConvertUtility Namespace

Messages

Description

A collection of any informational messages returned.

Read-only.

Syntax

expression.Messages

where expression is an PNConversionResult object.

Returns a List<PNConversionResultMessage> collection.

See Also:

Completed ConverterPlugInUsed Errors OutputFileRenderedPages

OutputFiles PrintJobPrintedPages PrintJobs Submitted

OutputFiles

Description

A collection of PNConversionResultOutputFile objects. There will be one object in the collection for
every file created. The PNConversionResultOutputFile object contains the full path to the output file.

Read-only.

Syntax

expression.OutputFiles

where expression is an PNConversionResult object.

Returns a List<PNConversionResultOutputFile> collection.

See Also:

Completed ConverterPlugInUsed Errors Messages OutputFileRenderedPages

PrintJobPrintedPages PrintJobs Submitted

PrintJobPrintedPages

Description

A collection of PNConversionResultPrintJobPrintedPage objects. This page object represents the print
settings of the page when a converter from Document Conversion Service uses the Document
Conversion Service to convert the file.

Read-only.

334

Document Conversion Service 3.0

Converting With PEERNET.ConvertUtility

PEERNET.ConvertUtility Namespace

Syntax

expression.PrintJobPrintedPages

where expression is an PNConversionResult object.

Returns a List<PNConversionResultPrintJobPrintedPage> collection.

See Also:

Completed ConverterPlugInUsed Errors Messages

OutputFileRenderedPages OutputFiles PrintJobs Submitted

OutputFileRenderedPages

Description

A collection of PNConversionResultOutputFileRenderedPage objects. A
PNConversionResultOutputFileRenderedPage object contains information about each individual page
for this converted file, including what file it was created in and what page it is in the new file.

Read-only.

Syntax

expression.OutputFileRenderedPages

where expression is an PNConversionResult object.

Returns a List<PNConversionResultOutputFileRenderedPage> collection

See Also:

Completed ConverterPlugInUsed Errors Messages

OutputFiles PrintJobPrintedPages PrintJobs Submitted

PrintJobs

Description

A collection of PNConversionResultPrintJob objects. This print job object represents a single print job
created when a converter from Document Conversion Service uses the Document Conversion Service
to convert the file. Most documents will only create a single print job, but there are certain converters,
such as Excel, that do create multiple print jobs for a single document.

Read-only.

Syntax

expression.PrintJobs

where expression is an PNConversionResult object.

Document Conversion Service 3.0

335 Converting With PEERNET.ConvertUtility

PEERNET.ConvertUtility Namespace

Returns a List<PNConversionResultPrintJob> objects.

See Also:

Completed ConverterPlugInUsed Errors Messages OutputFileRenderedPages

OutputFiles PrintJobPrintedPages Submitted

Submitted

Description

The time at which the conversion request was submitted to Document Conversion Service.

Read-only.

Syntax

expression.Submitted

where expression is an PNConversionResult object.

Returns a DateTime object.

See Also:

Completed ConverterPlugInUsed Errors Messages OutputFileRenderedPages

OutputFiles PrintJobPrintedPages PrintJobs

336

Document Conversion Service 3.0

Converting With PEERNET.ConvertUtility

PEERNET.ConvertUtility Namespace

PNConversionResultError

Description

The PNConversionResultError class wraps a single error message returned as part of a collection of
errors in a PNConversionResult object.

Properties

 Value Gets the error message.

Properties

Value

Description

Gets the error message.

Syntax

expression.Value

where expression is an PNConversionResultError object.

Returns a String.

Document Conversion Service 3.0

337 Converting With PEERNET.ConvertUtility

PEERNET.ConvertUtility Namespace

PNConversionResultMessage

Description

The PNConversionResultMessage class wraps a single information message returned as part of a
collection of messages in a PNConversionResult object.

Properties

 Value Gets the informational message.

Properties

Value

Description

Gets the informational message.

Syntax

expression.Value

where expression is an PNConversionResultMessage object.

Returns a String.

338

Document Conversion Service 3.0

Converting With PEERNET.ConvertUtility

PEERNET.ConvertUtility Namespace

PNConversionResultOutputFile

Description

A PNConversionResultOutputFile object is created for every physical file created on disk. It contains
the full output filename of the created file and three collections: a
PNConversionResultOutputFileRenderedPage collection of pages representing each page in the file
on disk, a PNConversionResultPrintJobPrintedPage collection of each printed page that was used to
create the file, and a PNConversionResultPrintJob collection of print jobs that were used to create the
output file.

Methods

 GetOutputFileRenderedPages Read-only; Returns a collection of
PNConversionResultOutputFileRenderedPage objects.

 GetPrintJobPrintedPages Read-only; Returns a collection of
PNConversionResultPrintJobPrintedPage objects.

 GetPrintJobs Read-only; Returns a collection of
PNConversionResultPrintJob objects.

Properties

 OutputFilePath Read-only; The filename of the file created.

Methods

GetOutputFileRenderedPages

Description

Returns a collection of PNConversionResultOutputFileRenderedPage objects. A
PNConversionResultOutputFileRenderedPage object contains information about each individual page
for this converted file, including what file it was created in and what page number it is in the new file.

Read-only.

Syntax

expression.GetOutputFileRenderedPages

where expression is an PNConversionResultOutputFile object.

Returns a List<PNConversionResultOutputFileRenderedPage> collection.

See Also:

Document Conversion Service 3.0

339 Converting With PEERNET.ConvertUtility

PEERNET.ConvertUtility Namespace

GetPrintJobPrintedPages GetPrintJobs

GetPrintJobPrintedPages

Description

Returns a collection of PNConversionResultPrintJobPrintedPage objects. This page object represents
the print settings of the page when a converter from Document Conversion Service uses the
Document Conversion Service to convert the file.

Read-only.

Syntax

expression.GetPrintJobPrintedPages

where expression is an PNConversionResultOutputFile object.

Returns a List<PNConversionResultPrintJobPrintedPage> collection.

See Also:

GetOutputFileRenderedPages GetPrintJobs

GetPrintJobs

Description

Returns a collection of PNConversionResultPrintJob objects. This print job object represents a single
print job created when a converter from Document Conversion Service uses the Document
Conversion Service to convert the file. Most documents will only create a single print job, but there are
certain converters, such as Excel, that do create multiple print jobs for a single document.

Read-only.

Syntax

expression.GetPrintJobs

where expression is an PNConversionResultOutputFile object.

Returns a List<PNConversionResultPrintJob> collection.

See Also:

GetOutputFileRenderedPages GetPrintJobPrintedPages

340

Document Conversion Service 3.0

Converting With PEERNET.ConvertUtility

PEERNET.ConvertUtility Namespace

Properties

OutputFilePath

Description

The name of the file created. This is the fully qualified path, including directory and filename.

Read-only.

Syntax

expression.OutputFilePath

where expression is an PNConversionResultOutputFile object

Returns a String.

Document Conversion Service 3.0

341 Converting With PEERNET.ConvertUtility

PEERNET.ConvertUtility Namespace

PNConversionResultOutputFileRenderedPage

Description

A PNConversionResultOutputFileRenderedPage object represents a single page in the physical file on
disk. From this object you can get the full output filename of the created file in which it is located and
other information about this page such as orientation and page width and height.

There are also two collections: a PNConversionResultPrintJobPrintedPage collection of each printed
page that was used to create the file, and a PNConversionResultPrintJob collection of print jobs that
were used to create the output file.

Methods

 GetOutputFile Read-only; Returns a PNConversionResultOutputFile object.

 GetPrintJobPrintedPages Read-only; Returns a collection of
PNConversionResultPrintJobPrintedPage objects.

 GetPrintJobs Read-only; Returns a collection of PNConversionResultPrintJob
objects.

Properties

 BitsPerPixel Read-only; The bits per pixel, or color depth of the page on disk.

 HeightInPixels Read-only; The height of the page in pixels.

 Orientation Read-only; The orientation of the page, either Portrait or
Landscape.

 PageNumber Read-only; The page number of the page in the file on disk.

 RotationInDegrees Read-only; The rotation of the page in the file on disk.

 WidthInPixels Read-only; The weight of the printed page in pixels.

 XPixelsPerInch Read-only; The vertical dots per inch, or resolution, of the page.

 YPixelsPerInch Read-only; The horizontal dots per inch, or resolution, of the page.

342

Document Conversion Service 3.0

Converting With PEERNET.ConvertUtility

PEERNET.ConvertUtility Namespace

Methods

GetOutputFile

Description

Returns a PNConversionResultOutputFile object. From this object you can get the full output filename
of the created file.

Read-only.

Syntax

expression.GetOutputFile

where expression is an PNConversionResultOutputFileRenderedPage object.

Returns a PNConversionResultOutputFile object.

See Also:

GetPrintJobPrintedPages GetPrintJobs

GetPrintJobPrintedPages

Description

Returns a collection of PNConversionResultPrintJobPrintedPage objects. This page object represents
the print settings of the page when a converter from Document Conversion Service uses the
Document Conversion Service to convert the file.

Read-only.

Syntax

expression.GetPrintJobPrintedPages

where expression is an PNConversionResultOutputFileRenderedPage object.

Returns a List<PNConversionResultPrintJobPrintedPage> collection.

See Also:

GetOutputFile GetPrintJobs

GetPrintJobs

Description

Returns a collection of PNConversionResultPrintJob objects. This print job object represents a single
print job created when a converter from Document Conversion Service uses the Document

Document Conversion Service 3.0

343 Converting With PEERNET.ConvertUtility

PEERNET.ConvertUtility Namespace

Conversion Service to convert the file. Most documents will only create a single print job, but there are
certain converters, such as Excel, that do create multiple print jobs for a single document.

Read-only.

Syntax

expression.GetPrintJobs

where expression is an PNConversionResultOutputFileRenderedPage object.

Returns a List<PNConversionResultPrintJobPrintedPage> collection.

See Also:

GetOutputFile GetPrintJobPrintedPages

Properties

BitsPerPixel

Description

This is the color depth, or bit depth of the page.

Read-only.

Syntax

expression.BitsPerPixel

where expression is an PNConversionResultOutputFileRenderedPage object.

Returns a UInt32.

See Also:

HeightInPixels Orientation PageNumber RotationInDegrees

WidthInPixels XPixelsPerInch YPixelsPerInch

HeightInPixels

Description

This is the height of the output page in pixels.

Read-only.

Syntax

expression.HeightInPixels

where expression is an PNConversionResultOutputFileRenderedPage object.

344

Document Conversion Service 3.0

Converting With PEERNET.ConvertUtility

PEERNET.ConvertUtility Namespace

Returns a UInt32.

See Also:

BitsPerPixel Orientation PageNumber RotationInDegrees

WidthInPixels XPixelsPerInch YPixelsPerInch

Orientation

Description

This is the orientation, either Portrait or Landscape, of the output page.

Read-only.

Syntax

expression.Orientation

where expression is an PNConversionResultOutputFileRenderedPage object.

Returns a UInt32 where Portrait = 0 and Landscape = 1.

See Also:

BitsPerPixel HeightInPixels PageNumber RotationInDegrees

WidthInPixels XPixelsPerInch YPixelsPerInch

PageNumber

Description

This is the number of the page in the output file.

Read-only.

Syntax

expression.PageNumber

where expression is an PNConversionResultOutputFileRenderedPage object.

Returns a UInt32.

See Also:

BitsPerPixel HeightInPixels Orientation RotationInDegrees

WidthInPixels XPixelsPerInch YPixelsPerInch

Document Conversion Service 3.0

345 Converting With PEERNET.ConvertUtility

PEERNET.ConvertUtility Namespace

RotationInDegrees

Description

This is the rotation, one of 0°, 90°, 180°, 270°, of the page. Pages are always rotated counter-
clockwise.

Read-only.

Syntax

expression.BitsPerPixel

where expression is an PNConversionResultOutputFileRenderedPage object.

Returns a UInt32, one of 0, 90, 180 or 270.

See Also:

BitsPerPixel HeightInPixels Orientation PageNumber

WidthInPixels XPixelsPerInch YPixelsPerInch

WidthInPixels

Description

This is the width of the page in pixels.

Read-only.

Syntax

expression.WidthInPixels

where expression is an PNConversionResultOutputFileRenderedPage object.

Returns a UInt32.

See Also:

BitsPerPixel HeightInPixels Orientation PageNumber

RotationInDegrees XPixelsPerInch YPixelsPerInch

XPixelsPerInch

Description

This is the vertical dots per inch (DPI), or resolution, of the output page when it is an image.

Read-only.

346

Document Conversion Service 3.0

Converting With PEERNET.ConvertUtility

PEERNET.ConvertUtility Namespace

Syntax

expression.XPixelsPerInch

where expression is an PNConversionResultOutputFileRenderedPage object.

Returns a UInt32.

See Also:

BitsPerPixel HeightInPixels Orientation PageNumber

RotationInDegrees WidthInPixels YPixelsPerInch

YPixelsPerInch

Description

This is the horizontal dots per inch, or resolution, of the page.

Read-only.

Syntax

expression.YPixelsPerInch

where expression is an PNConversionResultOutputFileRenderedPage object.

Returns a UInt32.

See Also:

BitsPerPixel HeightInPixels Orientation PageNumber

RotationInDegrees WidthInPixels XPixelsPerInch

Document Conversion Service 3.0

347 Converting With PEERNET.ConvertUtility

PEERNET.ConvertUtility Namespace

PNConversionResultPrintJob

Description

Many of the converters used by Document Conversion Service will use the Document Conversion
Service 3.0 printer to do the conversion. For most documents there is only a single print job created
when the document is printed, but some applications can send multiple jobs when printing a single file.
One example of this is Excel when printing a workbook containing multiple worksheets at different
print quality settings. Excel will create a separate print job for each group of worksheets with different
print qualities.

Each PNConversionResultPrintJob object represents one print job. The job object is identified by a
unique identifier, the GUID and contains information about the job such as the job status and the
number of pages spooled and printed.

There are also two collections: a PNConversionResultOutputFile collection of files created by this job,
and a PNConversionResultPrintJobPrintedPage collection of the printed pages belonging to this print
job.

Methods

 GetOutputFiles Read-only; Returns a collection of
PNConversionResultOutputFile objects.

 GetPrintJobPrintedPages Read-only; Returns a collection of
PNConversionResultPrintJobPrintedPage objects.

Properties

 BytesPrinted Read-only; How much of the document, in bytes, has been
printed.

 BytesSpooled Read-only; Size of the document (in bytes)in the printer queue.

 Title Read-only; Name of the document printed.

 GUID Read-only; Unique identifier for this object.

 JobID Read-only; non-unique identifier used by the Windows printing
sub-system.

 PagesPrinted Read-only; count of the number of pages printed.

 PagesSpooled Read-only; count of the number of pages spooled.

 Status Read-only; current print status of the job as an Integer value.

 StatusMessage Read-only; current print status of the job as an string value.

348

Document Conversion Service 3.0

Converting With PEERNET.ConvertUtility

PEERNET.ConvertUtility Namespace

 Submitted Read-only; The date and time this document was spooled.

 Title Read-only; Name of the document printed.

 UserName Read-only; name of the user who printed the document.

Methods

GetOutputFiles

Description

Returns a collection of PNConversionResultOutputFile objects, one for each file created. From this
object you can get the full output filename of the created file.

Read-only.

Syntax

expression.GetOutputFiles

where expression is an PNConversionResultPrintJob object.

Returns a List< PNConversionResultOutputFile> collection.

See Also:

GetPrintJobPrintedPages

GetPrintJobPrintedPages

Description

Returns a collection of PNConversionResultPrintJobPrintedPage objects, one for page printed by this
job.

Read-only.

Syntax

expression.GetPrintJobPrintedPages

where expression is an PNConversionResultPrintJob object.

Returns a List<PNConversionResultPrintJobPrintedPage> collection.

See Also:

GetOutputFiles

Document Conversion Service 3.0

349 Converting With PEERNET.ConvertUtility

PEERNET.ConvertUtility Namespace

Properties

BytesPrinted

Description

Returns the size of the printed job in bytes. This can be different from BytesSpooled.

Read-only.

Syntax

expression.BytesPrinted

where expression is an PNConversionResultPrintJob object.

Returns a UInt64.

See Also:

BytesSpooled GUID JobID PagesPrinted PagesSpooled

Status StatusMessage Submitted Title UserName

BytesSpooled

Description

The size of the spooled job in bytes.

Read-only.

Syntax

expression.BytesSpooled

where expression is an PNConversionResultPrintJob object.

Returns a UInt64.

See Also:

BytesPrinted GUID JobID PagesPrinted PagesSpooled

Status StatusMessage Submitted Title UserName

GUID

Description

A string based unique identifier for this object.

Read-only.

350

Document Conversion Service 3.0

Converting With PEERNET.ConvertUtility

PEERNET.ConvertUtility Namespace

Syntax

expression.GUID

where expression is an PNConversionResultPrintJob object.

Returns a String.

See Also:

BytesPrinted BytesSpooled JobID PagesPrinted PagesSpooled

Status StatusMessage Submitted Title UserName

JobId

Description

This is a non-unique numerical identifier used by the Windows printing sub-system.

Read-only.

Syntax

expression.JobId

where expression is an PNConversionResultPrintJob object.

Returns a UInt32.

See Also:

BytesPrinted BytesSpooled GUID PagesPrinted PagesSpooled

Status StatusMessage Submitted Title UserName

PagesPrinted

Description

Returns the number of pages printed. This can be different from PagesSpooled.

Read-only.

Syntax

expression.PagesPrinted

where expression is an PNConversionResultPrintJob object.

Returns a UInt32.

See Also:

Document Conversion Service 3.0

351 Converting With PEERNET.ConvertUtility

PEERNET.ConvertUtility Namespace

BytesPrinted BytesSpooled GUID JobID PagesSpooled

Status StatusMessage Submitted Title UserName

PagesSpooled

Description

Returns the number of pages spooled. This can be different from PagesPrinted.

Read-only.

Syntax

expression.PagesSpooled

where expression is an PNConversionResultPrintJob object.

Returns a UInt32.

See Also:

BytesPrinted BytesSpooled GUID JobID PagesPrinted

Status StatusMessage Submitted Title UserName

Status

Description

The print status of the job as a numerical value. See the Remarks section for a list of the status
values and what they mean.

Read-only.

Syntax

expression.Status

where expression is an PNConversionResultPrintJob object.

Returns a UInt32.

Remarks

The status can be one or more of the values in the table below.These are the same values used by
the JOB_INFO_2 structure in Microsoft's Win32 Printing and Print Spooler functions and structures.
See the Microsoft documentation for more details.

The values are OR'd together to define the current status of the job. To determine which values, the
hexadecimal values must be examined:

If Status = 388, which is 0x00000184

JOB_STATUS_DELETED 0x00000100

352

Document Conversion Service 3.0

Converting With PEERNET.ConvertUtility

PEERNET.ConvertUtility Namespace

JOB_STATUS_PRINTED 0x00000080
JOB_STATUS_DELETING 0x00000004

 0x00000184

Job Status Hexadecimal Value Integer Value
JOB_STATUS_PAUSED 0x00000001 1
JOB_STATUS_ERROR 0x00000002 2
JOB_STATUS_DELETING 0x00000004 4
JOB_STATUS_SPOOLING 0x00000008 8
JOB_STATUS_PRINTING 0x00000010 16
JOB_STATUS_OFFLINE 0x00000020 32
JOB_STATUS_PAPEROUT 0x00000040 64
JOB_STATUS_PRINTED 0x00000080 128
JOB_STATUS_DELETED 0x00000100 256
JOB_STATUS_BLOCKED_DEVQ 0x00000200 512
JOB_STATUS_USER_INTERVENTION 0x00000400 1024
JOB_STATUS_RESTART 0x00000800 2048
JOB_STATUS_COMPLETE 0x00001000 4096

JOB_STATUS_RETAINED 0x00002000 8192

JOB_STATUS_RENDERING_LOCALLY 0x00004000 16384

See Also:

BytesPrinted BytesSpooled GUID JobID PagesPrinted

PagesSpooled StatusMessage Submitted Title UserName

StatusMessage

Description

The current print status of the job as an string value. This value can be an empty string.

Read-only.

Syntax

expression.StatusMessage

where expression is an PNConversionResultPrintJob object.

Returns an String.

See Also:

BytesPrinted BytesSpooled GUID JobID PagesPrinted

PagesSpooled Status Submitted Title UserName

Submitted

Description

Document Conversion Service 3.0

353 Converting With PEERNET.ConvertUtility

PEERNET.ConvertUtility Namespace

Returns the size of the printed job in bytes. This can be different from BytesSpooled.

Read-only.

Syntax

expression.Submitted

where expression is an PNConversionResultPrintJob object.

Returns an DateTime.

See Also:

BytesPrinted BytesSpooled GUID JobID PagesPrinted

PagesSpooled Status StatusMessage Title UserName

Title

Description

The name of the document printed that created this print job. This is the name the printing application
uses in the print queue. It can be different from the actual document name.

Read-only.

Syntax

expression.Title

where expression is an PNConversionResultPrintJob object.

Returns an String.

See Also:

BytesPrinted BytesSpooled GUID JobID PagesPrinted

PagesSpooled Status StatusMessage Submitted UserName

UserName

Description

Returns the name of the user who printed the document.

Read-only.

Syntax

expression.UserName

where expression is an PNConversionResultPrintJob object.

354

Document Conversion Service 3.0

Converting With PEERNET.ConvertUtility

PEERNET.ConvertUtility Namespace

Returns an String.

See Also:

BytesPrinted BytesSpooled GUID JobID PagesPrinted

PagesSpooled Status StatusMessage Submitted Title

Document Conversion Service 3.0

355 Converting With PEERNET.ConvertUtility

PEERNET.ConvertUtility Namespace

PNConversionResultPrintJobPrintedPage

Description

A PNConversionResultPrintJobPrintedPage object is created for every page of the document or file
that is printed.

The page object represents the print settings of the page when spooled to the Document Conversion
Service printer. These settings are different from the PNConversionResultOutputFileRenderedPage
settings, which are the settings of the output file created. For instance, printing a single page
document in color and creating a fax resolution TIFF image will give a
PNConversionResultPrintJobPrintedPage object with a BitsPerPixel = 24, and a
PNConversionResultOutputFileRenderedPage object with BitsPerPixel = 1.

There are also two collections: a PNConversionResultOutputFileRenderedPage collection of pages,
currently only a collection of one, representing this page in the final output on disk, and a
PNConversionResultOutputFile collection of files that contain this pages as a
PNConversionResultOutputFileRenderedPage object.

Methods

 GetOutputFileRenderedPages Read-only;Returns a collection of
PNConversionResultOutputFileRenderedPage objects.

 GetOutputFiles Read-only; Returns a collection of
PNConversionResultOutputFile objects.

 GetPrintJob Read-only; Returns a PNConversionResultPrintJob object.

Properties

 BitsPerPixel Read-only; The bits per pixel, or color depth of the printed
page.

 HeightInPixels Read-only; The height of the printed page in pixels.

 Orientation Read-only; The orientation of the page, either Portrait or
Landscape.

 PageNumber Read-only; The page number of the page.

 Skipped Read-only; Boolean value True if the page was skipped.

 WidthInPixels Read-only; The weight of the printed page in pixels.

 XPixelsPerInch Read-only; The vertical dots per inch, or resolution, of the
page.

356

Document Conversion Service 3.0

Converting With PEERNET.ConvertUtility

PEERNET.ConvertUtility Namespace

 YPixelsPerInch Read-only; The horizontal dots per inch, or resolution, of the
page.

Methods

GetOutputFileRenderedPages

Description

Returns a collection of PNConversionResultOutputFileRenderedPage objects, one for every page in
the output physical file on disk.

Read-only.

Syntax

expression.GetOutputFileRenderedPages

where expression is an PNConversionResultPrintJobPrintedPage object.

Returns a List<PNConversionResultOutputFileRenderedPage> collection.

See Also:

GetOutputFiles GetPrintJob

GetOutputFiles

Description

Returns a collection of PNConversionResultOutputFile objects, one for each file created. From this
object you can get the full output filename of the created file.

Read-only.

Syntax

expression.GetOutputFiles

where expression is an an PNConversionResultPrintJobPrintedPage object.

Returns a List< PNConversionResultOutputFile> collection.

See Also:

GetOutputFileRenderedPages GetPrintJob

Document Conversion Service 3.0

357 Converting With PEERNET.ConvertUtility

PEERNET.ConvertUtility Namespace

GetPrintJob

Description

Returns the PNConversionResultPrintJob object that created this
PNConversionResultPrintJobPrintedPage.

Read-only.

Syntax

expression.GetPrintJob

where expression is an PNConversionResultPrintJob object.

Returns a PNConversionResultPrintJob object.

See Also:

GetOutputFileRenderedPages GetOutputFiles

Properties

BitsPerPixel

Description

This is the color depth, or bit depth of the page. This can be different from the BitsPerPixel values in
any PNConversionResultOutputFileRenderedPage objects in the collection returned from
GetOutputFileRenderedPages method. It is commonly 1 for black and white, or monochrome printing,
and 24 when printing in color.

Read-only.

Syntax

expression.BitsPerPixel

where expression is an PNConversionResultPrintJobPrintedPage object.

Returns a UInt32.

See Also:

HeightInPixels Orientation PageNumber Skipped

WidthInPixels XPixelsPerInch YPixelsPerInch

HeightInPixels

Description

This is the height of the page in pixels.

358

Document Conversion Service 3.0

Converting With PEERNET.ConvertUtility

PEERNET.ConvertUtility Namespace

Read-only.

Syntax

expression.HeightInPixels

where expression is an PNConversionResultPrintJobPrintedPage object.

Returns a UInt32.

See Also:

BitsPerPixel Orientation PageNumber Skipped

WidthInPixels XPixelsPerInch YPixelsPerInch

Orientation

Description

This is the orientation, either Portrait or Landscape, of the page when printed.

Read-only.

Syntax

expression.Orientation

where expression is an PNConversionResultPrintJobPrintedPage object.

Returns a UInt32 where Portrait = 0 and Landscape = 1..

See Also:

BitsPerPixel HeightInPixels PageNumber Skipped

WidthInPixels XPixelsPerInch YPixelsPerInch

PageNumber

Description

This is the page number of the printed page.This can be different from the page number of the page in
the resulting file on disk.

Read-only.

Syntax

expression.PageNumber

where expression is an PNConversionResultPrintJobPrintedPage object.

Returns a UInt32.

Document Conversion Service 3.0

359 Converting With PEERNET.ConvertUtility

PEERNET.ConvertUtility Namespace

See Also:

BitsPerPixel HeightInPixels Orientation Skipped

WidthInPixels XPixelsPerInch YPixelsPerInch

Skipped

Description

This property is True if the page was skipped.

Read-only.

Syntax

expression.Skipped

where expression is an PNConversionResultPrintJobPrintedPage object.

Returns a UInt32.

See Also:

BitsPerPixel HeightInPixels Orientation PageNumber

WidthInPixels XPixelsPerInch YPixelsPerInch

WidthInPixels

Description

This is the width of the page in pixels.

Read-only.

Syntax

expression.WidthInPixels

where expression is an PNConversionResultPrintJobPrintedPage object.

Returns a UInt32.

See Also:

BitsPerPixel HeightInPixels Orientation PageNumber

Skipped XPixelsPerInch YPixelsPerInch

XPixelsPerInch

Description

360

Document Conversion Service 3.0

Converting With PEERNET.ConvertUtility

PEERNET.ConvertUtility Namespace

This is the vertical dots per inch (DPI), or resolution, of the page.

Read-only.

Syntax

expression.XPixelsPerInch

where expression is an PNConversionResultPrintJobPrintedPage object.

Returns a UInt32.

See Also:

BitsPerPixel HeightInPixels Orientation PageNumber

Skipped WidthInPixels YPixelsPerInch

YPixelsPerInch

Description

This is the horizontal dots per inch (DPI), or resolution, of the page.

Read-only.

Syntax

expression.YPixelsPerInch

where expression is an PNConversionResultPrintJobPrintedPage object.

Returns a UInt32.

See Also:

BitsPerPixel HeightInPixels Orientation PageNumber

Skipped WidthInPixels XPixelsPerInch

Document Conversion Service 3.0

361 Converting With PEERNET.ConvertUtility

PEERNET.ConvertUtility Namespace

PNProfile

Description

The PNProfile class provides an interface for working with the profiles that Document Conversion
Service uses to convert documents. Profiles control both the type of file created and optionally the
behavior of the converters.

A profile is a structured XML file on disk that contains the list of settings. The settings are organized as
a list of name\value pairs in the XML document. See Creating and Customizing Profiles for more
information on the default profiles that come with Document Conversion Service, where they are
stored, and how to modify existing or create new profiles.

Static Methods

 GetListofProfileNames Returns a list of the existing profiles in specified location.

Enumerations

 PNProfileSearchLocation The location in which to look for the profiles.

Methods

GetListofProfileNames

Description

Static method.

Returns a list of profile names from the location specified. Profiles are stored as XML document on
disk. A profile name is the file name of the XML document without the .xml extension.

Syntax

PNProfile.GetListofProfileNames(searchLevel)

PNProfile.GetListofProfileNames(AlternatePath)

Returns an IList<String> collection of profiles names from the specified location.

Parameters

PNProfileSearchLocation searchLevel

The location in which to search, one of PNProfileSearchLocation.values.

String AlternatePath

362

Document Conversion Service 3.0

Converting With PEERNET.ConvertUtility

PEERNET.ConvertUtility Namespace

The full path to an alternate location to search for profiles.

Enumerations

PNProfileSearchLocation

Description

Where to look for profile files.

Details

Name Value Description

DefaultProfiles

0

Returns profiles included with the Document
Conversion Service install. The default profiles are
stored in a global location available for all users on
the computer.

UserProfiles
1

Returns profiles that are stored in the user's local
data folder.

DefaultAndUserProfiles
2

Returns all profiles found in both the default profile
location and the user's local data folder.

Document Conversion Service 3.0

363 Converting With PEERNET.ConvertUtility

PEERNET.ConvertUtility Namespace

PNSetting

Description

A PNSetting class defines a name/value pair that describes a conversion setting. The name\value pairs
that can be used are the same settings that are used to create the XML-formatted profiles included with
Document Conversion Service. See Conversion Settings for a list of all of the settings that are available.

The PNSetting class is used to hold collections of settings in the following classes: PNConversionItem,
PNConvertFileInfo and PNProfile.

Methods

 PNSetting Initializes a new instance of a PNSetting object.

Properties

 Name Gets or sets the name in the name/value pair.

 Value Gets or sets the value in the name/value pair.

Methods

PNSetting

Description

Initializes an instance of the PNSetting object with the specified name and value.

Syntax

PNSetting(name, value)

Parameters

String name

The name of the conversion setting. See Conversion Settings for a list of all the name/value pairs
of settings that are available.

String value

The value associated with name.

364

Document Conversion Service 3.0

Converting With PEERNET.ConvertUtility

PEERNET.ConvertUtility Namespace

Properties

Name

Description

Gets or sets the name in the name/value pair. See Conversion Settings for a list of names for all of the
settings that are available.

Syntax

expression.Name

where expression is an PNSetting object.

Returns a String.

See Also:

Value

Value

Description

Gets or sets the value in the name/value pair. See Conversion Settings for the list of names and the
values that can be set for each.

Syntax

expression.Name

where expression is an PNSetting object.

Returns a String.

See Also:

Name

Document Conversion Service 3.0

365 Converting With PEERNET.ConvertUtility

PEERNET.ConvertUtility Namespace

Enumerations

The following enumerations are used in the PEERNET.ConvertUtility namespace.

 PNConvertResultStatus Conversion status result as a short string message.

 PNFileSortMode Sort the files none (system default), name, date created or
date modified when picking up files from system.

 PNFileSortOrder The order of the files, either Ascending or Descending.

PNConvertResultStatus

Description

Conversion status result as a short string message.

Details

Name Value (String)

ResultStatus_SUCCESS

Conversion was successful.

SUCCESS

ResultStatus_FAIL

Generic failure error.

FAIL

ResultStatus_FILECOPY_FAIL_MAXATTEMPTS

File copy failed after max attempts (20) to copy it to the
destination.

FILECOPY_FAIL_MAXATTEMPTS

ResultStatus_OVERWRITE_FAIL_EXISTING

File could not be overwritten because a file of the same
name exists.

OVERWRITE_FAIL_EXISTING

ResultStatus_DIRCREATE_FAIL

Directory could not be created.

DIRCREATE_FAIL

ResultStatus_EXCEPTION

An exception was thrown during conversion.

EXCEPTION

366

Document Conversion Service 3.0

Converting With PEERNET.ConvertUtility

PEERNET.ConvertUtility Namespace

PNFileSortMode

Description

Determines the sorting mode, if any, applied when picking up files from an input folder.

Details

Name Value (int)

None

No sorting is performed, files are listed as returned from
the system. Default.

0

Name

Files are sorted by file name.

1

DateCreated

Files are sorted using the file creation date on the file.

2

DateModifed

Files are sorted using the last modified date on the file.

3

PNFileSortOrder

Description

Determines the sorting order, if any, applied when picking up files from an input folder.

Details

Name Value (int)

Ascending

Sorts the files from low to high: 0-9, A-Z.

0

Descending

Sorts the files from high to low: Z-A, 9-0.

1

Document Conversion Service 3.0

367 Setting up Client-Server Conversion

Setting up Client-Server Conversion

Document Conversion Service supports client-server conversion using DCOM (Distributed Component
Object Model).

This scenario would be commonly used when running a web service that converts files running on one
computer with Document Conversion Service running on another computer. When the web server needs
to convert a file it will "talk" to the computer that the conversion service is running on and tell it to convert
the files. This is referred to as a client-server relationship where the web server is the client and the
computer running Document Conversion Service is the server.

Another example of this is when the Document Conversion Service is running on a server and a small
application to convert files is installed on each user's machine. This keeps all the heavy work of document
conversion on the server and not on the user's machine. In this case each user's machine is the client.

Typical Client-Server Configurations

When setting up client-server conversion, you will need to know if your computers are running on a
domain, on a workgroup, or a mix of the two.

The most common usage scenarios are explained below.

· The simplest setup is when both the clients and the server running Document Conversion
Service are on the same domain. In this case, nothing needs to be done to allow conversion.

· If the server is on a domain, and the client is a local user, a matching local account with the
same user name and password must be created on the server.

· If the server is on a workgroup, a matching local account with the same user name and
password as will need to exist on both the client and the server computer.

Best Practices

For remote, or client-server conversion, Document Conversion Service is first installed on the
computer that will be performing the conversions, then an additional setup component, the Document
Conversion Service Client Redistributable is installed on the client machines to allow the client
machines to talk to the server. The client redistributable is included in the Document Conversion
Service install.

Document Conversion Service is initially installed so that all authenticated users are able to
communicate in client -server conversion. This is done during installation by creating a local group,
Document Conversion Service Users and adding the Authenticated Users group as a member of the
local group. Permissions on the required Document Conversion Service components and folders are
all set using the Document Conversion Service Users group to allow client-server conversion to work
out of the box with little or no additional configuration needed.

The client install also creates the Document Conversion Service Users local group and adds the
Authenticated Users group to it's member list, as well as setting permissions on any required
components and folders using this group.

For situations where you only want certain users to be able to perform remote conversion, you can edit
the members list of the Document Conversion Service Users group on the server and the client to
remove the Authenticated Users group and add your desired users, or an existing group of users you
may already have set up.

368

Document Conversion Service 3.0

Setting up Client-Server Conversion

When setting up Document Conversion Service for client-server communication, we also recommend
the following best practices below.

· You will need to have access to an account with Administrative rights to run Document
Conversion Service on the server and the permissions to add local accounts and groups on
the server machine and to modify a group's membership.

· When installing Document Conversion Service and Document Conversion Service Client
Redistributable, let the setups create the local administrative account, DCSAdmin, with the
same user name and password on both the server and any clients.

Document Conversion Service 3.0

369 Setting up Client-Server Conversion

Setting up the Server

Setting up the Server

The first step is to install and configure the Document Conversion Service on the computer that will be the
conversion server.

Install Document Conversion Service

Document Conversion Service is initially installed so that all authenticated users are able to
communicate in client-server conversion using the created local group Document Conversion Service
Users. This allows remote conversion to work out of the box with little to no configuration needed.

A Logon Account to be used for Document Conversion Service is needed during the install. We
recommend allowing the install to create the local administrative user account, DCSAdmin. You can
instead choose to use a different local or domain account, but it must have administrative privileges.

Note

If you create the local DCSAdmin account during the install, make sure you write down or store the
password you used when creating this account. You will need to use the same password when
installing the client software.

If you want to restrict access to only certain user accounts or groups, you can edit the members list of
the Document Conversion Service Users group on the server and any clients to remove the
Authenticated Users group and add your desired users or group. Instructions for this are included
below in the Editing the Document Conversion Service Users Group Member List section.

See Installing Document Conversion Service Silently for command line parameters for silent
installation of both Document Conversion Service and Document Conversion Service Client
Redistributable.

1. Install Document Conversion Service on the computer that will be the server. The install creates
the following group and network share and uses them for client-server communication:

a. A local group named Document Conversion Service Users is added. The account set as the
Logon Account during the install and the Authenticated Users group are added to this local
group.

b. The folder C:\PEERNET\DCSREMOTE is created and assigned the share name of
DCSREMOTE. This share folder will be used by the clients to allow the conversion server
access to the files being converted.

c. Full permissions for anyone part of the Document Conversion Service Users group are added
to the C:\PEERNET root of the network share folder.

d. The Document Conversion Service Users is used to apply permissions on the DCOM
components needed for remote conversion.

2. Once installed, configure Document Conversion Service for the file types you want to convert. See
Starting and Stopping the Service and Advanced Configuration to configure your server for the file
types you want to convert.

3. Test your server configuration with the sample program as shown in The Convert File Sample. At
this point all conversion is local; you will not need to set any of the Remote Conversion Settings in
the sample at this point.

370

Document Conversion Service 3.0

Setting up Client-Server Conversion

Setting up the Server

4. Review the next section Additional Client-Server Configuration for any further setup that may be
needed in your environment.

Additional Client-Server Configuration

The following sections outline any additional configuration needed for different domain/workgroup client-
server scenarios, as well as how to remove the Authenticated Users membership from the Document
Conversion Service Users group and lock down the client-server access by adding your own groups or
user accounts.

My Server is on a Workgroup...

When the server is on a workgroup, the client can use accounts that are on the domain, or local user
accounts on the client. In both cases local accounts with matching user names and passwords must
be created on the server.

Local accounts already have the required DCOM access through the Authenticated Users group
added to the local group Document Conversion Service Users and no more changes should be
needed.

To lock down the accounts that have access, do the following:

1. On the server:

a. If needed, add the new local account with the matching user name and password as the
account on the client.

b. Once created, add this user as a member of the Document Conversion Service Users group
and remove the Authenticated Users group.

2. On the client:

a. Install the Document Conversion Service Client Redistributable setup using the same account
and password used when installing Document Conversion Service on the server.

b. Edit the member list of the Document Conversion Service Users group to add the account you
are using to perform conversion on the client and remove the Authenticated Users group.

My Server is on a Domain...

When the server is on a domain the client can use accounts that are also on the domain, or local user
accounts on the client.

Clients are Using Domain Accounts

The simplest configuration is when both the server and the client machines are all part of the same
domain, and you are using domain accounts. In this scenario, the install should have already added
the Authenticated Users group to the local group Document Conversion Service Users and no further
setup should be needed.

If you want tighter control over your accounts and permissions, you can remove the Authenticated
Users group from the member list of Document Conversion Service Users group and add the specific
domain users as members of this group on both the server and the client machine as shown in the
Editing the Document Conversion Service Users Group Member List section.

Document Conversion Service 3.0

371 Setting up Client-Server Conversion

Setting up the Server

Clients are Using Local Accounts

If the clients and server are all part of the same domain, but the accounts you are using to perform the
conversion on the client machines are local accounts, you will need to create a matching account on
the server with the same user name and password as the account on the client machine.

Local accounts already have the required DCOM access through the Authenticated Users group
added to the local group Document Conversion Service Users.

If you want more granular control over the accounts that have access, do the following:

1. On the server:

a. If needed, add the new new local account with the matching user name and password as the
account on the client.

b. Once created, add this user as a member of the Document Conversion Service Users group
and remove the Authenticated Users group.

2. On the client:

a. Install the Document Conversion Service Client Redistributable setup using the same account
and password used when installing Document Conversion Service on the server.

b. Edit the member list of the Document Conversion Service Users group to add the account you
are using to perform conversion on the client and remove the Authenticated Users group.

372

Document Conversion Service 3.0

Setting up Client-Server Conversion

Setting up the Server

Editing the Document Conversion Service Users Group Member List

Which users are allowed to communicate in client-server conversion are controlled using the
membership list of our local group, Document Conversion Service Users. The install initially sets this
group to include all authenticated users by including the Authenticated Users group as a member. By
removing this group and adding your own users and groups you can lock down which accounts have
access.

1. Type "Computer Management" into the search field on the Start menu to open the Computer
Management tool and edit the local groups. You can also get access to this tool from the
Administrative Tools section of the Control Panel.

2. Under Local Users and Group select Groups to see all local groups. Right-click on the
Document Conversion Service Users group and select Properties.

Document Conversion Service 3.0

373 Setting up Client-Server Conversion

Setting up the Server

3. On the Properties dialog, select the Authenticated Users group and delete it from the group using
the Remove button. Then use the Add button to add the desired users or company user groups.

4. Click Apply and OK to save your changes.

374

Document Conversion Service 3.0

Setting up Client-Server Conversion

Setting up the Client

Setting up the Client

After Document Conversion Service has been installed and configured on the machine that you want to
use as the server you need to install the redistributable client program on each client computer to make
the connection between the client and the server. If you have created any custom conversion profiles that
you are using, they too will need to be copied to the client machine.

Installing the Client Redistributable

The client redistributable, PNDocConvClientSetup_3.0.exe, is included as part of the Document
Conversion Service install.

It can be found in the \Samples\Redist folder under your Document Conversion Service
installation path. Copy the client setup program, PNDocConvClientSetup_3.0.exe, from the server
where you have installed Document Conversion Service to the client computer, or a location that can
be accessed from the client computer and run the setup on the client computer.

A Logon Account to be used for Document Conversion Service by the client is needed during the
install. We recommend allowing the install to create the local administrative user account, DCSAdmin.
You can instead choose to use a different local or domain account if desired.

Note

If you create the local DCSAdmin account during the install, you will need to use the same password
you used installing Document Conversion Service on the server.

The client setup will install the following:

· the client component that allows the client to communicate with the server

· the default set of conversion profiles included with Document Conversion Service; if you have
created any custom conversion profiles you will need to copy them over to the client machine
as well.

· a local group named Document Conversion Service Users is added, and two members, the
account set as the Logon Account during the client install and the Authenticated Users group
are added to this local group.

A Minimum install is the default and installs the above components. If a Complete install is chosen,
the Watch Folder Service and sample code, the command line conversion tools and all additional
sample code is also installed. You can choose exactly what parts are installed by selecting a Custom
install.

For future installs, bundling the client with your own install, or push software installation, see Installing
PNDocConvClientSetup_3.0.exe Silently for command line parameters for silent installation.

Document Conversion Service 3.0

375 Setting up Client-Server Conversion

Setting up the Client

Editing Client Permissions

The client install is initially configured so that all authenticated users are able to communicate in client-
server conversion using the created local group Document Conversion Service Users. This allows
remote conversion to work out of the box with little to no configuration needed.

To restrict permissions to only specific users, or to use an existing group to apply permissions, remove
 Authenticated Users from the Document Conversion Service Users group members and add your
desired user or group as shown in the section Editing the Document Conversion Service Users Group
Member List.

376

Document Conversion Service 3.0

Setting up Client-Server Conversion

Setting up the Client

Running the Convert File Sample

Before you begin...

Before you can test on the client you need to have Document Conversion Service running on the
remote server as per the steps in Starting and Stopping the Service.

When the service has started, the Convert File sample application can be run to test the client-
server communication.

1. Open the C# sample by going to Start - All Programs - PEERNET Document
Conversion Service Client 3.0 – Samples - C# - Run Convert File Sample.

2. Choose a file to convert using the Browse button or by typing in the file name. The Output File
Name field will be populated from the chosen file name.

3. Choose a folder in which to store the new file.

Document Conversion Service 3.0

377 Setting up Client-Server Conversion

Setting up the Client

4. Choose the profile to use to create the file. The sample defaults to TIFF images but PDF or JPEG
can be created as well.

5. Enable the Conversion Service is running on this remote computer checkbox.

a. Type in the name of the server where Document Conversion Service is installed and running.
If this field is not filled in the conversion will not succeed.

b. For client-server conversion a temporary conversion folder that is accessible to both the client
and the server is required. A network shared folder named DCSREMOTE is automatically
created on the server as part of the Document Conversion Service installation and already has
the required permissions for any users who are part of the Document Conversion Service
Users group. You can leave this folder selected, or use your own custom share folder. If you
use a different share folder, you will need to give the Document Conversion Service Users
group full permissions in that folder.

6. Click Convert to convert the chosen file. The file will be created in the output folder selected and
when the conversion process is finished, the results are displayed in the list box at the bottom.

378

Document Conversion Service 3.0

Setting up Client-Server Conversion

Setting up a Client-Server Watch Folder

Setting up a Client-Server Watch Folder

In this configuration the complete install of Document Conversion Service Client Redistributable, which
includes the Watch Folder Service, would be installed on the client computer and the Document
Conversion Service would be installed on a separate computer, the server computer.

Note

The Document Conversion Service Client Redistributable installs only the basic required
components by default. To also install the Watch Folder service, choose the Complete install, or
select Custom and then choose which samples and tools to install.

We want the input and output folders to be local to the client computer and the actual conversion done on
the server, here a computer named DOC-CONV-SRV1.

To accomplish this, the server needs access to the staging and working folders used by the Watch Folder
Service.

The simplest way to do this is to use the network share folder, DCSREMOTE, that was created when
Document Conversion Service was installed on DOC-CON-SRV1.

If you want to use a different network share, you will need to add full permissions for the Document
Conversion Service Users group to the shared folder.

Sample Watch Folder Configuration

<WatchFolders>

 <WatchFolder Name="Shared DCOM Folder Watch FAX TIFF" >
 <Settings>
 <!-- Folder options -->
 <add Name="InputFolder" Value ="C:\PEERNET\InputFax\"/>
 <add Name="SearchFilter" Value="*.*"/>
 <add Name="IncludeSubFolders" Value="True"/>
 <add Name="StagingFolder" Value="\\DOC-CONV-SRV1\DCSREMOTE\WatchFolder\Staging\"/>
 <add Name="WorkingFolder" Value="\\DOC-CONV-SRV1\DCSREMOTE\WatchFolder\Working\"/>
 <add Name="FailedFolder" Value="C:\PEERNET\Failed\"/>
 <add Name="CompletedFolder" Value="C:\PEERNET\Completed"/>
 <add Name="OutputFolder" Value ="C:\PEERNET\FAX TIFF OUT\"/>
 <add Name="PollingInterval" Value="15000"/>
 <add Name="DCOMComputerName" Value="DOC-CONV-SRV1"/>
 <add Name ="TestMode" Value="false" />

 <add Name ="Devmode settings;Resolution" Value="300"/>
 <add Name ="Save;Output File Format" Value="TIFF Serialized" />
 <add Name ="Save;Append" Value ="0"/>
 <add Name ="Save;Color reduction" Value="BW"/>
 <add Name ="TIFF File Format;BW compression" Value="Group4" />

 <add Name="Image Options;Fax" Value="1" />
 <add Name="Image Options;Fax Profile" Value="0" />
 <add Name="Image Options;Fax Resolution" Value="4" />
 <add Name ="Processing;Rotate landscape" Value="90" />
 </Settings>
 </WatchFolder>

</WatchFolders>

Document Conversion Service 3.0

379 Microsoft IIS and Document Conversion Service

Microsoft IIS and Document Conversion Service

Starting with Document Conversion Service 3.0.015, integrating conversion using a web service in
Microsoft IIS has been simplified to make it easier to add file conversion into your web services. If you are
running an earlier version of Document Conversion Service, see the section IIS and Previous Versions of
Document Conversion Service below.

Local File Conversion with IIS

The addition of the Authenticated Users group to our local group Document Conversion Service Users
automatically gives any IIS application pools access to all of the COM objects needed and to our default
conversion folder C:\PEERNET. Adding access to other folders is as simple as adding full permissions for
the Document Conversion Service Users group to that folder.

For situations where you only want certain users to be able to perform conversion, you can edit the
members list of the Document Conversion Service Users group on the server and the client to remove the
Authenticated Users group and add your desired users, or an existing group of users you may already
have set up.

When calling the PEERNET.ConvertUtility methods or any of the command line utilities in a web service,
the ConversionWorkingFolder argument must be specified and the Document Conversion Service Users
group must have Full control or at least Modify permissions on that folder or the conversion will fail.

380

Document Conversion Service 3.0

Microsoft IIS and Document Conversion Service

The sample code below is from a WCF service hosted on an IIS website.

public String ConvertToTIFF(String InputFile, String OutputFolder,
 String ConversionWorkingFolder)
{
 String resultsStr = String.Empty;
 String convworkingFolder = @"C:\PEERNET\";

 if (!String.IsNullOrEmpty(ConversionWorkingFolder)) {
 convworkingFolder = ConversionWorkingFolder;
 }

 PNConversionItem convItem = null;
 try
 {
 convItem = PEERNET.ConvertUtility.PNConverter.ConvertFile(
 InputFile, OutputFolder,Guid.NewGuid().ToString(),
 true, true, true, "TIFF 200dpi Monochrome",
 String.Empty,String.Empty,null,
 String.Empty, convworkingFolder, String.Empty);

 if (convItem == null) {
 resultsStr += "Null item";
 }
 else {
 if (convItem.HasErrors()) {
 resultsStr += "There were errors";

 foreach (PNConversionResultError error in convItem.ConversionResult.Errors) {
 resultsStr += error.Value;
 resultsStr += "; ";
 }
 }
 else {
 resultsStr += "Converted file.";
 }
 }
 }
 catch (Exception ex) {
 resultsStr += String.Format("Exception occurred converting {0} to folder {1}. [{2}]",
 InputFile, OutputFolder, ex.Message);
 }

 return resultsStr;
}

Conversion can be called from another application (the service consumer) as follows:

static void Main(string[] args)
{
 ConverterService.ConverterServiceClient client =
 new ConverterService.ConverterServiceClient();

 String results = client.ConvertToTIFF(@"C:\PEERNET\files.txt",
 @"C:\PEERNET\", String.Empty);

 Console.WriteLine(results);

 // Always close the client.
 client.Close();

 Console.WriteLine("Press any key to exit...");
 Console.ReadKey();
}

Document Conversion Service 3.0

381 Microsoft IIS and Document Conversion Service

Remote Conversion with IIS

If you plan on running your IIS server and Document Conversion Service on separate computers and
converting remotely (client-server conversion), a few extra steps are needed.

For remote conversion, the application pool that the web service is running under will need access to the
shared folder DCSREMOTE on the remote machine running Document Conversion Service. The easiest
way to do this is to have the web service use an application pool that is configured to use an identity (an
account) that has access to the remote machine. This identity can be a local account with matching
passwords that exists on both machines or, if the computers are on the domain, it can be a domain
account.

This account also needs access to the input, or the location of the file being converted, as well as the
output location where the file is being saved.

382

Document Conversion Service 3.0

Microsoft IIS and Document Conversion Service

The sample code below is for remote conversion from a WCF service hosted on an IIS website.

public String ConvertToTIFFRemote(String InputFile, String OutputFolder,
 String RemoteDCOMName, String RemoteWorkingFolder)
{
 String resultsStr = String.Empty;
 PNConversionItem convItem = null;

 try
 {
 convItem = PEERNET.ConvertUtility.PNConverter.ConvertFile(
 InputFile, OutputFolder, Guid.NewGuid().ToString(),
 true, true, true, "TIFF 200dpi Monochrome",
 String.Empty, String.Empty, null,
 RemoteDCOMName, RemoteWorkingFolder, String.Empty);

 if (convItem == null) {
 resultsStr += "Null item";
 }
 else {
 if (convItem.HasErrors()) {
 resultsStr += "There were errors";

 foreach (PNConversionResultError error in convItem.ConversionResult.Errors) {
 resultsStr += error.Value;
 resultsStr += "; ";
 }
 }
 else {
 resultsStr += "Converted file.";
 }
 }
 }
 catch (Exception ex) {
 resultsStr += String.Format("Exception occurred converting {0} to folder {1}. [{2}]",
 InputFile, OutputFolder, ex.Message);
 }

 return resultsStr;
}

Conversion can be called from another application (the service consumer) as follows:

static void Main(string[] args)
{
 ConverterService.ConverterServiceClient client =
 new ConverterService.ConverterServiceClient();

 String results = client.ConvertToTIFFRemote(@"C:\PEERNET\Bliss.bmp", @"C:\PEERNET\",
 @"DCS-CONV-SRV", @"\\DCS-CONV-SRV\DCSRemote");

 Console.WriteLine(results);

 // Always close the client.
 client.Close();

 Console.WriteLine("Press any key to exit...");
 Console.ReadKey();
}

Document Conversion Service 3.0

383 Microsoft IIS and Document Conversion Service

IIS and Previous Versions of Document Conversion Service

These steps demonstrate the changes needed to allow previous versions of Document Conversion
Service to be called from an IIS web service application.

To perform the conversion the user (or identity) that the web service runs as needs to be added to the
Document Conversion Service Users local user group to have access to Document Conversion Service.

The user group Document Conversion Service Users is created when Document Conversion Service or
the Document Conversion Service Client Redistributable is installed.

Identify the User

The first step to be done is to identify the user that IIS is using to run the web service. The default user
is normally IIS APPPOOL\DefaultAppPool. If you are using a different user, you can find out this
information by locating the DistributedCOM error in the System log of the Event Viewer.

Add the User to Document Conversion Service Users

Once you know the user, you will need to add this user to the Document Conversion Service Users
group so that it will have the necessary permissions. Once you have done the following steps, you
must restart your computer to have the changes take effect.

1. From the Control Panel, go to System and Security and then to Administrative Tools. From
here, open the Computer Management console.

384

Document Conversion Service 3.0

Microsoft IIS and Document Conversion Service

2. In the console, under Computer Management (local) - Local Users and Groups - Groups,
locate and select the Document Conversion Service Users group.

3. Double-click the group to open the Document Conversion Service Users Properties dialog, then
click the Add button.

Document Conversion Service 3.0

385 Microsoft IIS and Document Conversion Service

4. In the Select Users dialog change the From this location: to be the local computer (it normally
defaults to the domain if you are on one) and add the desired user in the list at the bottom. Here
we have added the default user IIS APPPOOL\DefaultAppPool; your actual user may be different.
When done, press the OK button.

386

Document Conversion Service 3.0

Microsoft IIS and Document Conversion Service

5. The Document Conversion Service Users Properties dialog should now look like the one below.
Press the Apply button to save the changes.

6. This is the LAST AND MOST IMPORTANT STEP. You need to restart the computer to have the
changes take effect. If you do not restart the computer you will still get the DistributedCOM error
when trying to use Document Conversion Service from within the IIS environment.

Adding Document Conversion Service Users Permissions to Folders

When calling PEERNET.ConvertUtility methods or the command line conversion utilities from within a
web service, the Document Conversion Service Users local group sometimes needs to be added to
certain folders to give the conversion process the required permissions to access the folders.

One such scenario is if you are passing a custom folder for the ConversionWorkingFolder, this
Document Conversion Service Users group needs Full Control, or at least Modify access on that
folder. Not having this level of access will cause the conversion process to take upwards of an extra
90 seconds to complete as the utility attempts to clean up interim files and folders created as part of
the conversion. Once access is granted, the cleanup is instant.

Other folders that may need permissions include the input and output folders, custom paths for results
files and the SIL logging files.

1. On the folder you want to use as the ConversionWorkingFolder, right-click and select Properties
from the context menu.

Document Conversion Service 3.0

387 Microsoft IIS and Document Conversion Service

2. On the Properties dialog box, select the Security tab and then the Edit... button to open the
Permissions dialog.

388

Document Conversion Service 3.0

Microsoft IIS and Document Conversion Service

3. On the Permissions dialog, click the Add... button.

Document Conversion Service 3.0

389 Microsoft IIS and Document Conversion Service

4. In the Select Users or Groups dialog change the From this location: to be the local computer (it
normally defaults to the domain if you are on one). Then add the Document Conversion Service
Users group in the list at the bottom. When done, press the OK button.

390

Document Conversion Service 3.0

Microsoft IIS and Document Conversion Service

5. Back on the Permissions dialog, make sure the new group Document Conversion Service Users is
selected. In the permissions section below under the Allow column, make sure there is a check
mark in the Modify option. You can also check Full control to grant the group full access.

6. Click OK to apply the changes.

Document Conversion Service 3.0

391 Conversion Settings

Conversion Settings

Conversion settings are used to describe the output created by Document Conversion Service and consist
of a collection of name-value pairs. These settings can also be used to control the behavior of the
individual converters, such as configuring Word to pass a password or telling Excel to ignore the print
areas when printing worksheets. The technique you are using to convert your files (command line utilities,
the PEERNET.ConvertUtility.dll .NET library or the PNDocConvQueueServiceLib COM object) will
determine how you will pass this collection of settings to Document Conversion Service.

Command Line Utilities

When using the command line utilities the settings are passed by supplying the name of a profile file, a
structured XML file that contains the list of settings. Below is a sample command line using a profile file
named TIFF 300dpi Optimized Color.xml, followed by a listing of the XML file itself. Note that the .xml
extension is not needed when using the command line utilities. Several sample profiles are included for
your use, or to use as a base to customize to your needs.

Passing setting using a profile

DCSConvertFile /P="TIFF 300dpi OptimizedColor" /NE "C:\Test\File.pdf"

Sample Profile

<?xml version="1.0" encoding="utf-8"?>
<Profile Type="0"
 DisplayName="TIFF 300dpi OptimizedColor"
 Description ="Creates a single TIFF image at 300dpi.">
 <Settings>

 <!-- Output file options -->
 <add Name="Devmode settings;Resolution" Value="300"/>
 <add Name="Save;Output File Format" Value="TIFF Multipaged"/>
 <add Name="Save;Color reduction" Value="Optimal"/>
 <add Name="Save;Dithering method" Value="Halftone"/>

 <!-- TIFF Compression Options -->
 <add Name="TIFF File Format;BW compression" Value="Group4"/>
 <add Name="TIFF File Format;Color compression" Value="LZW RGB"/>
 <add Name="TIFF File Format;Indexed compression" Value="LZW"/>
 <add Name="TIFF File Format;Greyscale compression" Value="LZW"/>
 <add Name="JPEG File Format;Color compression" Value="Medium Quality"/>
 <add Name="JPEG File Format;Greyscale compression" Value="High Quality"/>
 <add Name="Image Options;Fax" Value="0"/>

 </Settings>
</Profile>

PEERNET.ConvertUtility .NET Library

When using the PEERNET.ConvertUtility .NET library methods from your own managed code you have
the choice of supplying the name of a profile file, an XML file that contains the list of settings, or by passing
in an IDictionary<String,String> collection of name-value pairs directly. Several sample profiles are
included for your use, or to use as a base to customize to your needs.

392

Document Conversion Service 3.0

Conversion Settings

Code Sample - Calling ConvertFile with a Profile

using PEERNET.ConvertUtility;

// conversion results returned, use to find files created or errors
PNConversionItem resultItem =
 PNConverter.ConvertFile(@"C:\Input\Memo.doc",
 @"C:\Output\",
 "ConvertedMemo",
 true, // overwrite existing
 false, // remove file extension
 false, // create log file
 "TIFF 300dpi OptimizedColor", // profile
 String.Empty,
 String.Empty,
 null, // no extra settings
 String.Empty, //remote computer
 String.Empty);

Code Sample - Calling ConvertFile with a settings collection

using PEERNET.ConvertUtility;

IDictionary<String, String> settings =
 new Dictionary<String, String>();

settings.Add("Devmode settings;Resolution", "300");
settings.Add("Save;Output File Format", "TIFF Multipaged");
settings.Add("Save;Color reduction", "Optimal");
settings.Add("Save;Dithering method", "Halftone");

// conversion results returned, use to find files created or errors
PNConversionItem resultItem =
 PNConverter.ConvertFile(@"C:\Input\Memo.doc",
 @"C:\Output\",
 "ConvertedMemo",
 true, // overwrite existing
 false, // remove file extension
 false, // create log file
 settings,
 String.Empty,
 String.Empty,
 null, // no extra settings
 String.Empty, //remote computer
 String.Empty);

PNDocConvQueueServiceLib COM Object

The PNDocConvQueueServiceLib COM object uses a list of name-value pairs of conversion settings to
configure the output that is created. These settings are passed into the COM object directly through its
IPNDocConvQueueItem.Set method before calling IPNDocConvQueueItem.Convert.

The following code sample show the conversion settings strings for setting the resolution to 200 DPI and
creating multipaged black and white TIFF files. The Resolution setting is part of the Devmode settings
 configuration options, while Output File Format , Append, Color reduction, and Dithering
method are part of the Save configuration options.

Document Conversion Service 3.0

393 Conversion Settings

You can find more sample output configurations by looking at the name and value pairs used in the
sample conversion profiles included with Document Conversion Service.

Code Sample - C#

PNDocConvQueueServiceLib.PNDocConvQueueItem item = null;

// Create the conversion item
item = new PNDocConvQueueServiceLib.PNDocConvQueueItem();

// Set conversion settings
item.Set("Devmode settings;Resolution", "200");
item.Set("Save;Output File Format", "TIFF Multipaged");
item.Set("Save;Color reduction", "BW");
item.Set("Save;Dithering method", "Floyd");
item.Set("TIFF File Format;BW compression", "Group4");
item.Set("TIFF File Format;Color compression", "LZW RGB");
item.Set("TIFF File Format;Indexed compression", "LZW");
item.Set("TIFF File Format;Greyscale compression", "LZW");

// convert the file
item.Convert("Microsoft Word",
 "C:\Test\Report.docx",
 "C:\Test\Out\ConvertedReport");

Code Sample - VB.NET

Dim item As PNDocConvQueueServiceLib.IPNDocConvQueueItem

 ' Create the conversion item
item = New PNDocConvQueueServiceLib.PNDocConvQueueItem()

' Set conversion settings
item.Set("Devmode settings;Resolution", "200")
item.Set("Save;Output File Format", "TIFF Multipaged")
item.Set("Save;Color reduction", "BW")
item.Set("Save;Dithering method", "Floyd")
item.Set("TIFF File Format;BW compression", "Group4")
item.Set("TIFF File Format;Color compression", "LZW RGB")
item.Set("TIFF File Format;Indexed compression", "LZW")
item.Set("TIFF File Format;Greyscale compression", "LZW")

' convert the file
item.Convert("Microsoft Word", _
 "C:\Test\Report.docx", _
 "C:\Test\Out\ConvertedReport")

394

Document Conversion Service 3.0

Conversion Settings

Name-Value Tables for Conversion Settings

The table below lists the different conversion settings separated out into categories with a description of
the settings available in each. Click the link for that category to view all available settings for that option.

Options Description of Settings

General Converter Options These are general options that can be applied to the conversion
process itself or to all converters.

Endorsement Options Endorsements are header and footer information that can be
stamped onto each page of the output created by Document
Conversion Service.

Word Converter Options These options are specific to the behavior of the Word
converter.

Excel Converter Options These options are specific to the behavior of the Excel
converter.

PowerPoint Converter Options These options are specific to the behavior of the PowerPoint
converter.

Ghostscript Converter Options These options are specific to the behavior of the Ghostscript
converter.

Image Converter Options These options are specific to the behavior of the Image
converter.

OutsideIn AX Options These options are specific to the behavior of the OutsideIn
converter.

Advanced Features Advanced settings such as custom paper size and text
extraction.

Advanced File Naming Settings to configure the file naming profiles (preset file naming
schemes) for multipaged, multipaged with JobID, serialized and
serialized with JobID.

Devmode settings Resolution (DPI), page size and color mode settings.

Image Options Image output options such as creating fax mode images and
page rotation settings.

JPEG File Format Compression settings for color and greyscale JPEG images.

Document Conversion Service 3.0

395 Conversion Settings

Options Description of Settings

PDF File Format PDF file format settings for compression, content encoding and
PDF/A-1b compliant PDF files.

PDF Security PDF encryption and file permissions.

Processing Settings to adjust the image during conversion such as trimming,
cropping, copying to a new page size, resampling and brightness
adjustment.

Save Settings for output file format, color reduction, dithering and file
name prompting.

TIFF File Format Compression settings for black and white, color, indexed and
greyscale TIFF images.

Watermark Stamping Settings to create a text watermark diagonally across the page.

396

Document Conversion Service 3.0

Conversion Settings

Creating and Customizing Profiles

Creating and Customizing Profiles

Document Conversion Service includes several sample profiles for common types of output files for your
use. The default set of profiles are installed into the following location:

Default profile location:

C:\ProgramData\PEERNET\Document Conversion Service\Profiles

Custom Profiles

You can use the sample profiles above as a base to edit and create your own custom profiles. Custom
profiles can be stored per user in the user's application data folder. Both the local and roaming data
folders are searched when looking for user profiles. If a profile is found in a user location, that profile will
be used. If no matching profiles are found in the user profile locations, the default profile location is
searched.

User profile locations searched in this order:

C:\Users\<user>\AppData\Roaming\Document Conversion Service\Profiles
C:\Users\<user>\AppData\Local\Document Conversion Service\Profiles

When using the PEERNET.ConvertUtility.dll and the command line tools, the full path to a profile stored
elsewhere on disk can also be passed instead of the base name of the profile.

See the section Conversion Settings for information on the contents and structure of the profile files, and
the Name-Value Tables for Conversion Settings for the conversion setting strings to use to get various
output formats.

Included Sample Profiles

The profiles included with the Document Conversion Service install are listed below.

See below for e-discovery specific profiles.

Profile Name Profile Description

Adobe PDF Multipage Creates Adobe PDF files. The PDF files created using this profile
are, where possible, vector PDF files. Vector PDF files are also
known as searchable PDF files. The other PDF profiles provided
create raster, or non-searchable PDF files.

What this profile cannot do is create a vector PDF from an existing
raster PDF (scanned PDF) or other image formats such as TIFF or
JPEG. A vector PDF is only created if the source document contains
text or vector graphics already.

BMP 100dpi Color Creates Windows Bitmap images (one image for each page) at
100dpi. Bitmap images are always serialized.

JPEG 60dpi Color
JPEG 120dpi Color
JPEG 200dpi Color

Creates color JPEG images (one image for each page) at the dots
per inch (dpi) specified. JPEG files are always serialized.

Document Conversion Service 3.0

397 Conversion Settings

Creating and Customizing Profiles

Profile Name Profile Description

JPEG 300dpi Color
JPEG 600dpi Color

PDF 200dpi OptimizedColor
Serialized
PDF 300dpi OptimizedColor
Serialized

Creates serialized (one file per page) PDF documents at the dots per
inch (dpi) specified. Color is optimized per page to reduce file size.

PDF 200dpi OptimizedColor
PDF 300dpi OptimizedColor

Creates a multipaged PDf document at the dots per inch (dpi)
specified. Color is optimized per page to reduce file size.

PDF A-1b 200dpi
OptimizedColor Serialized
PDF A-1b 300dpi
OptimizedColor Serialized

Creates serialized (one file per page) PDF/A-1b compliant PDF
documents at the dots per inch (dpi) specified. Color is optimized per
page to reduce file size.

PDF A-1b 200dpi
OptimizedColor
PDF A-1b 300dpi
OptimizedColor

Creates a multipaged PDF/A-1b compliant PDF document at the
dots per inch (dpi) specified. Color is optimized per page to reduce
file size.

TIFF 120dpi Color LowJPEG
TIFF 150dpi Color LowJPEG
TIFF 200dpi Color LowJPEG
TIFF 300dpi Color LowJPEG
TIFF 600dpi Color LowJPEG

Creates multipaged color TIFF images at the dots per inch (dpi)
specified. Images are compressed using low quality JPEG
compression. This can give a smaller file size but a lower quality
image.

TIFF 120dpi Color HighPEG
TIFF 150dpi Color HighPEG
TIFF 200dpi Color HighPEG
TIFF 300dpi Color HighPEG
TIFF 600dpi Color HighPEG

Creates multipaged color TIFF images at the dots per inch (dpi)
specified. Images are compressed using high quality JPEG
compression. This can give a higher quality image but also a larger
size file.

TIFF 120dpi Grayscale
TIFF 150dpi Grayscale
TIFF 200dpi Grayscale
TIFF 300dpi Grayscale
TIFF 600dpi Grayscale

Creates multipaged grayscale TIFF images at the dots per inch (dpi)
specified.

TIFF 120dpi OptimizedColor
TIFF 150dpi OptimizedColor
TIFF 200dpi OptimizedColor
TIFF 300dpi OptimizedColor
TIFF 600dpi OptimizedColor

Creates a single multipage TIFF image at the dots per inch (dpi)
specified. Color is optimized per page to reduce file size. File is
compressed using Group 4 compression for monochrome and LZW
for all other color types.

TIFF 200dpi OptimizedColor
HighJPEG

Creates a single multipage TIFF image at the dots per inch (dpi)
specified. Color is optimized per page to reduce file size. File is
compressed using Group 4 compression for monochrome and high
quality JPEG compression for all other color types.

TIFF 200dpi Monochrome
Serialized

Creates serialized (one file per page) black and white TIFF images
at 200dpi.

398

Document Conversion Service 3.0

Conversion Settings

Creating and Customizing Profiles

Profile Name Profile Description

TIFF 200dpi Monochrome Creates a single multipage black and white TIFF image at 200dpi.

TIFF 204x196dpi Monochrome
Fax

Creates a single multipage black and white fax format TIFF image at
204 x 196dpi.

TIFF 204x196dpi Monochrome
Fax ReverseBitOrder

Creates a single multipage black and white Group 4 fax format TIFF
image at 204 x 196dpi with a reverse bit order of least significant bit
to most significant bit (LSB2MSB). Often needed for fax boards.

TIFF 204x196dpi Monochrome
Fax Group3 256GreyPalette

Creates a single multipage Group 3 fax format TIFF image at 204 x
196dpi using a grayscale palette.

TIFF 204x196dpi Monochrome
Fax Group3 256GreyPalette
ReverseBitOrder

Creates a single multipage Group 3 fax format TIFF image at 204 x
196dpi using a grayscale palette with a reverse bit order of least
significant bit to most significant bit (LSB2MSB).

TIFF 204x196dpi Monochrome
Fax Compatible with FCC

Created fax TIFF images matching the format created by the
Fax(TIFF) profile used in PEERNET File Conversion Center.
Provided for use by clients migrating from File Conversion Center to
Document Conversion Service.

TIFF 300dpi Allow Javascript
PDF

This profile is the same as the TIFF 300dpi Otimized Color above but
also enables the processing of Javascript, if present, in PDF files
when they are converted using this profile.

TIFF 300dpi Color Fax Creates a single multipage color fax format TIFF image at 300dpi.

TIFF 300dpi OptimizedColor
ExtractText Serialized

Creates serialized (one file per page) TIFF images at 300dpi. Color
is optimized per page to reduce file size. Text content, if available, is
extracted and saved as separate files with the same base name as
the output images.

TIFF 300dpi OptimizedColor
ExtractText

Creates a single multipage TIFF image at 300dpi. Color is optimized
per page to reduce file size. Text content, if available, is extracted
and saved as a separate file with the same base name as the output
image.

TIFF 300dpi OptimizedColor
Serialized

Creates serialized (one file per page) TIFF images at 300dpi. Color
is optimized per page to reduce file size.

TIFF 300dpi OptimizedColor
SplitByPageCount

Creates a sequence of multipaged 300 dots per inch TIFF images. A
new file in the sequence is started based on the page count set by
the SplitFileEveryNPages setting. When auto-splitting files, serialized
naming profile is always used to name each file in the sequence.

Document Conversion Service 3.0

399 Conversion Settings

Creating and Customizing Profiles

Profile Name Profile Description

TIFF 300dpi OptimizedColor
SplitByFileSize

Creates a sequence of multipaged 300 dots per inch TIFF images. A
new file in the sequence is started when the current file exceeds the
file size set by the SplitFileSizeThresholdInBytes setting. When auto-
splitting files, serialized naming profile is always used to name each
file in the sequence.

Text to A3 sized TIFF 120dpi
Monochrome
Text to A3 sized PDF 120dpi
Monochrome

Profiles for use when converting text files in Word to a specific size
of paper. These profiles target wide format (landscape oriented) text
files such as those generated on mainframe systems or other
reporting systems.

400

Document Conversion Service 3.0

Conversion Settings

Creating and Customizing Profiles

E-Discovery Profiles Profile Description

eDiscovery - Excel - PDF 300dpi
Convert Charts Only
eDiscovery - Excel - TIFF 300dpi
Convert Charts Only

For use with Excel documents, these profiles will print only
the embedded charts and any chart tabs in the document.

eDiscovery - Excel - PDF 300dpi Show
Formulas
eDiscovery - Excel - TIFF 300dpi Show
Formulas

For use with Excel documents, these profiles will print any
formulas from any cells as a comment at the end of each
sheet. If a comment already exists, the formula is inserted
before the existing text. For Excel documents, a tracked
changes history sheet is created if tracking is enabled,
background colors are removed, text is changed to black
and conditional formatting is removed.

eDiscovery PDF 300dpi AutoField
Replace
eDiscovery TIFF 300dpi AutoField
Replace

For use with Word, Excel and PowerPoint e-discovery,
these profiles will show all data in the documents and where
possible, replace any auto data, time and file fields in
headers, footers, and in the case of Excel, in cells too. For
Excel documents, a tracked changes history sheet is
created if tracking is enabled, background colors are
removed, text is changed to black and conditional formatting
is removed.

eDiscovery PDF 300dpi Monochrome
Fit On Page
eDiscovery TIFF 300dpi Monochrome
Fit On Page

For use with Word, Excel and PowerPoint e-discovery,
these profiles will show all data in the documents. The
output created is black and white. For Excel documents,
each sheet is fit to a single output page, a tracked changes
history sheet is created if tracking is enabled, background
colors are removed, text is changed to black and conditional
formatting is removed.

eDiscovery PDF 300dpi Span Pages
eDiscovery TIFF 300dpi Span Pages

For use with Word, Excel and PowerPoint e-discovery,
these profiles will show all data in the documents. For Excel
documents, tracked changes history sheet is created if
tracking is enabled, background colors are removed, text is
changed to black and conditional formatting is removed.

Document Conversion Service 3.0

401 Conversion Settings

File Extension to Converter Mapping

File Extension to Converter Mapping

The file extension of each file is used to determine what converter is used when Document Conversion
Service converts that file.

When using the PEERNET.ConvertUtility.dll or the command line tools to convert files, a default file
extension mapping profile, File Extension To Converter Map.xml, is used to determine this mapping. This
file can be edited and file extensions can be added, removed and changed as needed.

If desired, the file itself can be copied and renamed and the new mapping file passed to the
PEERNET.ConvertUtility methods or the command line tools as needed.

An simpler approach is to customize the file extension mapping by adding the setting into a profile file.
This allows you to set the file extension mapping at a file level instead of at the application level. Any file
extension mappings found in a profile will override the settings in the base File Extension To Converter
Map.xml file.

A common use of this would be to have a profile that uses the PEERNET Passthough Converter to skip
processing TIFF files, or one that uses Ghostscript to process PDF files instead of Adobe Reader.

For the Watch Folder Service, the service's configuration file contains it's own file extension to converter
mapping section. The extension to converter mapping listed in the configuration file has the same format
as in the mapping profile.

Customizing the File Extension Mapping Profile

File mapping profiles are stored in the same location as the conversion profiles. The default file extension
mapping profile, File Extension To Converter Map.xml, is installed as part of Document Conversion
Service. The difference between a conversion profile and a mapping profile is detected using the Type
attribute on the Profile element. It is 0 for a conversion profile and 1 for a file extension mapping profile.

The mapping consists of the extension (the suffix of the file name past the last dot or period in file's name)
and a semi-colon separated list of converter names. There are two things to remember when modifying
this file:

1. Each file extension can only be listed once.

2. The file extensions must be added in lower case and must include both the dot (.) and the
extension.

402

Document Conversion Service 3.0

Conversion Settings

File Extension to Converter Mapping

In some cases the file extension may only have one converter associated with it. Others, such as PDF
which can be converted using either Adobe Reader, Adobe Acrobat, Ghostscript or Outside-In AX, can
potentially have more than one converter, in order of preference, associated with it. The code sample
below shows a small snippet of the file mapping in the provided file mapping profile.

Code Sample - File Extension to Converter Mapping

<?xml version="1.0" encoding="utf-8"?>
<Profile Type="1"
 DisplayName="File Extension To Converter Map"
 Description ="Maps file extensions to the converter to use for that document.">
 <Settings>
 <add Name=".doc" Value="Microsoft Word;Outside-In AX"/>
 <add Name=".docx" Value="Microsoft Word;Outside-In AX"/>
 ...
 <add Name=".xlsx" Value="Microsoft Excel;Outside-In AX"/>
 <add Name=".xlsm" Value="Microsoft Excel;Outside-In AX"/>
 ...

 <add Name=".pdf" Value="Adobe Acrobat Reader;Ghostscript;Outside-In AX"/>
 ...
 </Settings>

</Profile>

Document Conversion Service 3.0

403 Conversion Settings

File Extension to Converter Mapping

The table below lists the available converters and their default file extensions.

 Converter Name Supported Document Types

Adobe Acrobat Reader Adobe PDF Documents (*.pdf)

Autodesk Design Review Design Review Drawings (*.dwf)
AutoCAD Drawings (*.dwg)

Microsoft Excel Excel Workbooks (*.xlsx, *.xlsm, *.xls)
Excel Templates (*.xltx, *.xltm, *.xlt)
Excel Binary Workbook (*.xlsb)

Ghostscript Postscript Files (*.ps)
Encapsulated Postscript Files (.eps)
Adobe PDF Documents (*.pdf)

 PEERNET Image Converter JPEG images (*.jpg)
TIFF images (*.tif)
Windows Bitmap images (*.bmp)
ZSoft PCX images (*.pcx)
ZSoft DCX images (*.dcx)
CServe Portable Network Graphics images (*.png)
Graphics Interchange Format image files (*.gif)
Icon Format (*.ico)
Windows Media Photo images (*.wdp, *.hdp, *.jxr)

PEERNET WIC Image Converter Icon Format (*.ico)
Windows Media Photo images (*.wdp, *.hdp, *.jxr)

Works with other Windows Imaging Component (WIC) third-party
add-ons such as:

DjVu Shell Extension Pack (*.djvu)
 FastPicture Viwer Codec Pack adds support for over 45+
image formats and over 500 raw digital camera formats

Internet Explorer HTML Files (*.htm, *.html)
Secure HTML (*.shtm, *.shtml)
Web Archive (*.mht)

Microsoft Outlook Outlook Message Files (*.msg)
Outlook Templates (*.oft)

Outside-In AX Oracle Outside In Viewer Technology (ActiveX) supports over 500
common file formats; see the documentation that came with your
Outside In Technology product.

Microsoft PowerPoint PowerPoint Presentations (*.pptx, *.pptm, *.ppt)
PowerPoint Shows (*.ppsx, *.ppsm, *.pps)
PowerPoint Templates (*potx, *.potm, *.pot)

Microsoft Publisher Publisher Files (*.pub)

Microsoft Visio Visio Drawings (*.vsd)

404

Document Conversion Service 3.0

Conversion Settings

File Extension to Converter Mapping

 Converter Name Supported Document Types

Microsoft Word Word Documents (*.docx, *.docm, *.doc)
Word Templates (*.dotx, *.dotm, *.dot)
Rich Text Documents (*.rtf)
Plain Text Files (*.txt)
Plain Text Log Files (*.log)

Microsoft XPS XPS Documents (*.xps)
Open XPS Documents (*.oxps)

PEERNET Passthrough Any file type.
Passes any file matching the extension through the system without
converting.

Document Conversion Service 3.0

405 Conversion Settings

General Converter Options

General Converter Options

These options can be used with any of the converters installed with Document Conversion Service. Table
values in bold text are the default value for that setting.

Sample Profile

<?xml version="1.0" encoding="utf-8"?>
<Profile Type="0"
 DisplayName="TIFF 300dpi First3PagesOnly "
 Description ="Prints only the first three pages.">
 <Settings>

 <!-- Print first three pages only -->
 <add Name="PageRange" Value="1-3"/>

 <!-- Output file options -->
 <add Name="Devmode settings;Resolution" Value="300"/>
 <add Name="Save;Output File Format" Value="TIFF Multipaged"/>
 ...

 </Settings>
</Profile>

Code Sample - C#

PNDocConvQueueServiceLib.PNDocConvQueueItem item = null;

// Create the conversion item
item = new PNDocConvQueueServiceLib.PNDocConvQueueItem();

// Set conversion settings
item.Set("PageRange", "1-3");
item.Set("Devmode settings;Resolution", "300");
item.Set("Save;Output File Format", "TIFF Multipaged");
...
// convert the file
item.Convert("Microsoft Word",
 @"C:\Test\Report.docx",
 @"C:\Test\Out\ConvertedReport");

Code Sample - VB.NET

Dim item As PNDocConvQueueServiceLib.IPNDocConvQueueItem

 ' Create the conversion item
item = New PNDocConvQueueServiceLib.PNDocConvQueueItem()

' Set conversion settings
item.Set("PageRange", "1-3")
item.Set("Devmode settings;Resolution", "300")
item.Set("Save;Output File Format", "TIFF Multipaged")
...
' convert the file
item.Convert("Microsoft Word", _
 "C:\Test\Report.docx", _
 "C:\Test\Out\ConvertedReport")

406

Document Conversion Service 3.0

Conversion Settings

General Converter Options

Conversion Settings

Name: PageRange

The page numbers and page ranges to include in the output file. Separate each
number and range with a comma. For example, "1, 3, 5-7" prints page 1 and 3 and
pages 5 through 7. Numbers in the page range exceeding the page count of the
source document are ignored.

Values: The string representing the page range.

Name: MaxSpooledPagesAllowed

Sets the maximum number of pages that are allowed to be printed/spooled.
Documents larger than this set page limit will not convert.

Values: The string representing the maximum number of pages allowed.

Name: MaxSpooledPagesGreaterThanPageCount

Sets the maximum number of spooled pages greater than the document page
count that is allowed to be printed. Documents larger than this set page limit will not
convert. This is often used to manage a single extra page created by duplex
printing forced by the document. It can also occur with mail merge documents and
PDF files that use Javascript. For PDF files, use the
Adobe.PDF.Javascript.Enable setting instead.

When not set (default), or set to 0, the conversion will fail if the number of spooled
pages is greater than the document page count.

Values: The string representing the maximum number of pages allowed.

Name: NormalizeFilenames

When true, file names passed in will be checked for normalization and normalized
when necessary. This means that the new output file name, if not specified, will be
the normalized filename.
The default is to not normalize the filename.

This is needed for foreign file name where some international characters are
represented using diacritics. A diacritic is a glyph added to a letter; they are used to
change the sound of the letter to which they are added. Some examples of a
diacritic are the accent grave (‘) and acute (’) in the French language.

Values: Pass true to normalize file names if necessary.

Document Conversion Service 3.0

407 Conversion Settings

General Converter Options

Conversion Settings

Name: SecondsToWaitForRunningConversionService

Applies only when using the command line tools (/D switch) and the
PEERNET.ConvertUtility methods.

The Document Conversion Service must be running, either locally or on a remote
computer for files or folders of files to be converted. If it is not running the
PEERNET.ConvertUtility methods or command line tools it will all return
immediately with an error. To wait for Document Conversion Service to be running
instead of failing to convert the files, use this setting to pass the desired wait
timeout value down. If Document Conversion Service hasn't started after waiting
the supplied amount if time, an error is returned.

Values: The number of seconds to wait for Document Conversion Service to be running
and ready to convert files.

Name: KeepFailedItemResultsFiles

Applies only when using the command line tools (/D switch) and when passing
custom settings to the PEERNET.ConvertUtility methods.

By default when a conversion fails, a results file ending with .failed.dcsresults for
the file that failed will be created in a .failed folder. To suppress the automatic
creation of these files pass this setting as true. When using the
PEERNET.ConvertUtility methods, the resultant items that are returned will contain
the path to the results file.

Values: Pass true to suppress the creation of these files.

Name: FailedFolder

Applies only when passing custom settings to the PEERNET.ConvertUtility
methods.

By default when a conversion fails, a results file ending with .failed.dcsresults for
the file that failed will be created in a .failed folder. Specifying a folder for this
custom setting will override the default use of the .failed folder and store the failed
results log files if the specified folder.

Values: Pass the path to the folder in which to store the failed conversion results files.

408

Document Conversion Service 3.0

Conversion Settings

General Converter Options

Conversion Settings

Name: AlwaysKeepProcessingLoggingFiles

Applies only when using the command line tools (/D switch) and the
PEERNET.ConvertUtility methods.

By default a Smart Inspect console logging file (*.sil) is always created when a
conversion runs. If the conversion is successful, the log file is normally deleted. If it
fails, it is kept and copied to the Windows temp folder. To always keep this file,
pass this setting as true. Overrides the variable
KeepFailedProcessingLoggingFiles. When using the PEERNET.ConvertUtility
methods, the results items that are returned will contain the path to the results file.

Values: Pass true to always keep the logging file.

Name: KeepFailedProcessingLoggingFiles

Applies only when using the command line tools (/D switch) and the
PEERNET.ConvertUtility methods.

By default when a conversion fails, the Smart Inspect console logging file (*.sil)
created as part of the conversion process is kept and copied to the Windows temp
folder. To have these files deleted even when the conversion fails, pass this setting
as true. When using the PEERNET.ConvertUtility methods, the results items that
are returned will contain the path to the results file.

Values: Pass true to delete these files when the conversion is finished even if the
conversion has failed.

Name: UseCompressedDateTimeFormat

Applies only when using the command line tools (/D switch) and the
PEERNET.ConvertUtility methods.

Controls the formatting of the name of the date and time subfolder used internally
by the conversion utility in the staging and working folders for file conversion, as
well as in naming the internal logging files (*.sil). This setting would only need to be
altered if you are dealing with very long folder and file path names that exceed the
255 character path limit, as a way of reducing the internally created paths so that
they do not exceed the maximum path length.

When set to FALSE, or not provided, the folder name follows the pattern
'2016_03_31_2_38_46_PM'. The compressed format is shorter, and uses a 24-
hour time format, giving a folder following the pattern '20160331143846'.

Values: Pass true to use the shorter, numerical format.

Document Conversion Service 3.0

409 Conversion Settings

Endorsement Options

Endorsement Options

These options control the behavior of the endorsements that can be stamped on the output created by
Document Conversion Service.

Endorsements are the placing of additional header and footer information at the top and bottom of each
page. See also Watermark Stamping to add watermarks to the page content.

Header and footers can contain text such titles and page numbers. The default height of both the header
and the footer is 12 points; this can be adjusted individually as needed.

Both the header and footer can be made up of three separate sections - a left section, a center section
and a right section. The width of each section can be set individually to allow for text wrapping within each
section. The default width for each section is the width of the page. Text in the top left and bottom left
section is always left justified, text in the top center and bottom center section is always centered and text
in top right and bottom right sections is always right justified.

The data displayed in each part of the header or footer can be formatted using the Endorsement
Formatting Codes to add page number and total page count information to your header and footer text, as
well as to display the text in different fonts, font sizes, colors and other text attributes such as bold, italic
and underline. The default font used is Arial at 12 points.

Sample Profile

<?xml version="1.0" encoding="utf-8"?>
<Profile Type="0"
 DisplayName="Endorsed TIFF 300dpi"
 Description ="Created TIFF with header and footers.">
 <Settings>

 <!-- Add header and footers for each page -->
 <add Name="Endorsements;Enable" Value="1"/>
 <add Name="Endorsements;HeaderHeightInPoints" Value="20"/>

 <!-- Change the text color and formatting. -->
 <add Name="Endorsements;HeaderLeftFormat"
 Value="&KFF0000&BInternal Use&B"/>

 <!-- Multiline. -->
 <add Name="Endorsements;HeaderRightFormat"
 Value="Confidential
DO NOT COPY"/>

 <!-- Change text style and size. -->
 <add Name="Endorsements;FooterHeightInPoints" Value="20"/>
 <add Name="Endorsements;FooterCenterFormat"
 Value="&'Courier'&P of &N"/>

 <!-- Output file options -->
 <add Name="Devmode settings;Resolution" Value="300"/>
 <add Name="Save;Output File Format" Value="TIFF Multipaged"/>
 ...

 </Settings>
</Profile>

410

Document Conversion Service 3.0

Conversion Settings

Endorsement Options

Code Sample - C#

PNDocConvQueueServiceLib.PNDocConvQueueItem item = null;

// Create the conversion item
item = new PNDocConvQueueServiceLib.PNDocConvQueueItem();

// Set conversion settings
item.Set("Endorsements;HeaderHeightInPoints", "20");
item.Set("Endorsements;HeaderLeftFormat",
 "&KFF0000&BInternal Use&B");
item.Set("Endorsements;HeaderRightFormat",
 "Confidential\r\nDO NOT COPY");

item.Set("Endorsements;FooterHeightInPoints", "20");
item.Set("Endorsements;FooterCenterFormat",
 "&'Courier'&P of &N");
...
// convert the file
item.Convert("Microsoft Word",
 @"C:\Test\Report.docx",
 @"C:\Test\Out\ConvertedReport");

Code Sample - VB.NET

Dim item As PNDocConvQueueServiceLib.IPNDocConvQueueItem

 ' Create the conversion item
item = New PNDocConvQueueServiceLib.PNDocConvQueueItem()

' Set conversion settings
item.Set("Endorsements;Enable", "1")

item.Set("Endorsements;HeaderHeightInPoints", "20")
item.Set("Endorsements;HeaderLeftFormat", _
 "&KFF0000&BInternal Use&B")
item.Set("Endorsements;HeaderRightFormat", _
 "Confidential\r\nDO NOT COPY")

item.Set("Endorsements;FooterHeightInPoints", "20")
item.Set("Endorsements;FooterCenterFormat", _
 "&'Courier'&P of &N")
...
' convert the file
item.Convert("Microsoft Word", _
 "C:\Test\Report.docx", _
 "C:\Test\Out\ConvertedReport")

Conversion Settings - Endorsements Header and Footer Options

Name: Endorsements;Enable

Values: 0 - Do not add endorsements
1 - Add specified endorsements to each page

Document Conversion Service 3.0

411 Conversion Settings

Endorsement Options

Conversion Settings - Endorsements Header and Footer Options

Name: Endorsements;HeaderHeightInPoints

Values: The height of the header area in points. The default is 12 points.

Name: Endorsements;HeaderLeftWidthInPoints

Values: The width of the left section of the header area in points. The default is the width of
the page.

Name: Endorsements;HeaderCenterWidthInPoints

Values: The width of the center section of the header area in points. The default is the width
of the page.

Name: Endorsements;HeaderRightWidthInPoints

Values: The width of the right section of the header area in points. The default is the width
of the page.

Name: Endorsements;HeaderLeftFormat

Values: The text, with Endorsement Formatting Codes as needed, to put in the left section
of the header.

Name: Endorsements;HeaderCenterFormat

Values: The text, with Endorsement Formatting Codes as needed, to put in the center
section of the header.

Name: Endorsements;HeaderRightFormat

Values: The text, with Endorsement Formatting Codes as needed, to put in the right section
of the header.

Name: Endorsements;FooterHeightInPoints

Values: The height of the footer area in points. The default is 12 points.

412

Document Conversion Service 3.0

Conversion Settings

Endorsement Options

Conversion Settings - Endorsements Header and Footer Options

Name: Endorsements;FooterLeftWidthInPoints

Values: The width of the left section of the footer area in points. The default is the width of
the page.

Name: Endorsements;FooterCenterWidthInPoints

Values: The width of the center section of the footer area in points. The default is the width
of the page.

Name: Endorsements;FooterRightWidthInPoints

Values: The width of the right section of the footer area in points. The default is the width of
the page.

Name: Endorsements;FooterLeftFormat

Values: The text, with Endorsement Formatting Codes as needed, to put in the left section
of the footer.

Name: Endorsements;FooterCenterFormat

Values: The text, with Endorsement Formatting Codes as needed, to put in the center
section of the footer.

Name: Endorsements;FooterRightFormat

Values: The text, with Endorsement Formatting Codes as needed, to put in the right section
of the header.

Document Conversion Service 3.0

413 Conversion Settings

Endorsement Options

Endorsement Formatting Codes

The following formatting codes are used to format the text strings placed in the headers and footers. If you
are using the XML profiles to configure the endorsements you will need to use the XML character entities
& and " to represent the ampersand (&) and quotation marks (") to allow the XML data to be
interpreted correctly.

Header and Footer Formatting Codes

XML Code String Code Description

&P &P

This code is replaced by the current page number.

XML Example:
<add Name="Endorsements;HeaderLeftFormat"
 Value="Page &P"/>

String Example:
item.Set("Endorsements;HeaderLeftFormat",
 "Page &P")

&N &N

This code is replaced by the total number of pages in
the output file.

XML Example:
<add Name="Endorsements;HeaderLeftFormat"
 Value="Page &P of &N"/>

String Example:
item.Set("Endorsements;HeaderLeftFormat",
 "Page &P of &N")

&B &B

Turns bold formatting on and off. All text after the first
occurrence of the formatting code will be bold until the
same formatting code is encountered again.

XML Example:
<add Name="Endorsements;HeaderLeftFormat"
 Value="&BInternal Use&B -
Confidential"/>

String Example:
item.Set("Endorsements;HeaderLeftFormat",
 "&BInternal Use Only&B -
Confidential")

&I &I

Turns italic formatting on and off. All text after the first
occurrence of the formatting code will be italicized until
the same formatting code is encountered again.

XML Example:
<add Name="Endorsements;HeaderLeftFormat"
 Value="&IDo Not Copy&I -
Confidential"/>

String Example:
item.Set("Endorsements;HeaderLeftFormat",

414

Document Conversion Service 3.0

Conversion Settings

Endorsement Options

Header and Footer Formatting Codes

XML Code String Code Description

 "&IDo Not Copy&I - Confidential")

&U &U

Turns font underlining on and off. All text after the first
occurrence of the formatting code will be underlined
until the same formatting code is encountered again.

XML Example:
<add Name="Endorsements;HeaderLeftFormat"
 Value="&UDo Not Copy&U -
Confidential"/>

String Example:
item.Set("Endorsements;HeaderLeftFormat",
 "&UDo Not Copy&U - Confidential")

&S &S

Turns font strike though formatting on and off. All text
after the first occurrence of the formatting code will be
struck though (a line down the middle of the text) until
the same formatting code is encountered again.

XML Example:
<add Name="Endorsements;HeaderLeftFormat"
 Value="&SInternal Use&S -
Confidential"/>

String Example:
item.Set("Endorsements;HeaderLeftFormat",
 "&SInternal Use Only&S -
Confidential")

&X &X

Turns font superscript formatting on and off. All text
after the first occurrence of the formatting code will be
printed in superscript (appears smaller than the normal
line of type and is set slightly above it) until the same
formatting code is encountered again.

XML Example:
<add Name="Endorsements;HeaderLeftFormat"
 Value="This is &Xsuperscript
text&X - Confidential"/>

String Example:
item.Set("Endorsements;HeaderLeftFormat",
 "This is &Xsuperscript text&X -
Confidential")

&Y &Y

Turns font subscript formatting on and off. All text after
the first occurrence of the formatting code will be
printed in subscript (appears smaller than the normal
line of type and is set slightly below it) until the same
formatting code is encountered again.

Document Conversion Service 3.0

415 Conversion Settings

Endorsement Options

Header and Footer Formatting Codes

XML Code String Code Description

XML Example:
<add Name="Endorsements;HeaderLeftFormat"
 Value="This is &Ysubscript text&Y
- Confidential"/>

String Example:
item.Set("Endorsements;HeaderLeftFormat",
 "This is &Ysubscript text&Y -
Confidential")

&'fontname' &'fontname'

Sets the font to be used for the following text. All text
after the occurrence of the formatting code will be
printed in the specified font until another font formatting
code is encountered again. The default font is Arial.

XML Example:
<add Name="Endorsements;HeaderLeftFormat"
 Value="This is Arial and
&'Verdana'this is Verdana."/>

String Example:
item.Set("Endorsements;HeaderLeftFormat",
 "This is Arial and &'Verdana'this is
Verdana.")

&n &n

Sets the font size, in points, to be used for the following
text, where n is replaced with the desired point size. All
text after the occurrence of the formatting code will be
printed in the specified font size until another font size
formatting code is encountered again. The default font
size is 12 points.

XML Example:
<add Name="Endorsements;HeaderLeftFormat"
 Value="&14This is Arial 14 point."/>

String Example:
item.Set("Endorsements;HeaderLeftFormat",
 "&14This is Arial 14 point.")

&K000000 &K000000

Changes the color of the text. All text after the
occurrence of the formatting code will be printed in the
color specified until another color formatting code is
encountered again. The default color is Black. The color
is specified as six character RGB code.

XML Example:
<add Name="Endorsements;HeaderLeftFormat"
 Value="This is &KFF0000Red, this is
&K00FF00Green."/>

416

Document Conversion Service 3.0

Conversion Settings

Endorsement Options

Header and Footer Formatting Codes

XML Code String Code Description

String Example:
item.Set("Endorsements;HeaderLeftFormat",
 "This is &KFF0000Red, this is
&K00FF00Green.")

&& &&

Allows the insertion of an ampersand character into the
text.

XML Example:
<add Name="Endorsements;HeaderLeftFormat"
 Value="Printed by Company
&&Company"/>

String Example:
item.Set("Endorsements;HeaderLeftFormat",
 "Printed by Company && Company")

 \r\n

Allows the insertion of a newline character into the text.

XML Example:
<add Name="Endorsements;HeaderLeftFormat"
 Value="Line 1
Line 2"/>

String Example:
item.Set("Endorsements;HeaderLeftFormat",
 "Line 1\r\nLine 2.")

Document Conversion Service 3.0

417 Conversion Settings

Word Converter Options

Word Converter Options

These options control the behavior of the Word converter used by Document Conversion Service. Table
values in bold text are the default value for that setting.

Sample Profile

<?xml version="1.0" encoding="utf-8"?>
<Profile Type="0"
 DisplayName="TIFF 300dpi Word with Markup, replace dates "
 Description ="Prints Word documents with comments and tracking visible.">
 <Settings>

 <!-- Print Word with markup and 2 pages per sheet -->
 <add Name ="Microsoft.Word.Document.PrintOut.Item"
 Value="DocumentAndMarkup"/>
 <add Name ="Microsoft.Word.PageSetup.TwoPagesOnOne"
 Value="True"/>

 <!-- Replace date fields with <AUTODATE> string -->
 <add Name ="Microsoft.Word.ReplaceFieldDateWith"
 Value="<AUTODATE>"/>

 <!-- Output file options -->
 <add Name="Devmode settings;Resolution" Value="300"/>
 <add Name="Save;Output File Format" Value="TIFF Multipaged"/>
 ...

 </Settings>
</Profile>

Code Sample - C#

PNDocConvQueueServiceLib.PNDocConvQueueItem item = null;

// Create the conversion item
item = new PNDocConvQueueServiceLib.PNDocConvQueueItem();

// Set conversion settings
item.Set("Microsoft.Word.Document.PrintOut.Item", "DocumentAndMarkup");
item.Set("Microsoft.Word.PageSetup.TwoPagesOnOne", "True");
item.Set("Microsoft.Word.ReplaceFieldDateWith", "<AUTODATE>");
item.Set("Devmode settings;Resolution", "300");
item.Set("Save;Output File Format", "TIFF Multipaged");
...
// convert the file
item.Convert("Microsoft Word",
 @"C:\Test\Report.docx",
 @"C:\Test\Out\ConvertedReport");

418

Document Conversion Service 3.0

Conversion Settings

Word Converter Options

Code Sample - VB.NET

Dim item As PNDocConvQueueServiceLib.IPNDocConvQueueItem

 ' Create the conversion item
item = New PNDocConvQueueServiceLib.PNDocConvQueueItem()

' Set conversion settings
item.Set("Microsoft.Word.Document.PrintOut.Item", "DocumentAndMarkup")
item.Set("Microsoft.Word.PageSetup.TwoPagesOnOne", "True")
item.Set("Microsoft.Word.ReplaceFieldDateWith", "<AUTODATE>")
item.Set("Devmode settings;Resolution", "300")
item.Set("Save;Output File Format", "TIFF Multipaged")
...
' convert the file
item.Convert("Microsoft Word", _
 "C:\Test\Report.docx", _
 "C:\Test\Out\ConvertedReport")

Conversion Settings - Word Printing Options

Name: Microsoft.Word.Document.PrintOut.Item

Choose what parts of the document to print.

Values: Document - prints only the document.
DocumentAndMarkup - prints the document and any markup such as tracked
changes and comments.
DocumentMarkup - prints only the markup.
DocumentProperties - prints only the document properties.

Name: Microsoft.Word.Document.PrintOut.PageType

Choose if you want to print all pages, even pages or odd pages.

Values: All
Even
Odd

Name: Microsoft.Word.ActiveWindow.View.MarkupMode

Sets the display mode for tracked changes in the document. Applies when using
the printing option Word.Document.PrintOut.Item set to DocumentAndMarkup or
DocumentMarkup.

Values: BalloonRevisions - Displays revisions in balloons in the left or right margin.
InLineRevisions - Displays revisions within the text using strikethrough for
deletions and underlining for insertions.
MixedRevisions - Shows only comments and formatting revisions in the document.

Document Conversion Service 3.0

419 Conversion Settings

Word Converter Options

Conversion Settings - Word Printing Options

Name: Microsoft.Word.ActiveWindow.View.RevisionsView (Office 2010 and earlier)

This setting is deprecated starting with Office 2013. Use
Microsoft.Word.ActiveWindow.View.RevisionsFilter.View and
Microsoft.Word.ActiveWindow.View.RevisionsFilter.Markup instead.
Specifies whether the original version of a document or a version with revisions and
formatting changes applied are displayed.

Values: ViewFinal - Displays the document with formatting and content changes applied.
ViewOriginal - Displays the document before changes were made.

Name: Microsoft.Word.ActiveWindow.View.RevisionsFilter.View (Office 2013 and
later)

Specifies whether the original version of a document or a version with revisions and
formatting changes applied are displayed. Replaces
Microsoft.Word.ActiveWindow.View.RevisionsView in Office 2013 and later
versions.

Values: ViewFinal - Displays the document with formatting and content changes applied.
ViewOriginal - Displays the document before changes were made.

Name: Microsoft.Word.ActiveWindow.View.RevisionsFilter.Markup (Office 2013 and
later)

Specifies the extent of reviewer markup displayed in the document. This setting is
used starting with Office 2013.

Values: NoMarkup - Displays the final document with no markup visible.
SimpleMarkup - Displays the final document in simple markup: with revisions
incorporated, but with no markup visible.
AllMarkup - Displays the final document with all markup visible.

Name: Microsoft.Word.ActiveWindow.View.ShowComments

Pass True to display any comments in the document. Must be used with
Microsoft.Word.ActiveWindow.View.MarkupMode to display the comments as
balloons or inline, and Microsoft.Word.Document.PrintOut.Item set to print
document markup.

Values: String value "True" or "False".

420

Document Conversion Service 3.0

Conversion Settings

Word Converter Options

Conversion Settings - Word Printing Options

Name: Microsoft.Word.ActiveWindow.View.ShowFormatChanges

Pass True to display any formatting changes made to a document with Track
Changes enabled. Must be used with
Microsoft.Word.ActiveWindow.View.MarkupMode to display the comments as
balloons or inline, and Microsoft.Word.Document.PrintOut.Item set to print
document markup.

Values: String value "True" or "False".

Name: Microsoft.Word.ActiveWindow.View.ShowHiddenText

Pass True to display any text that was formatted as hidden.

Values: String value "True" or "False".

Name: Microsoft.Word.ActiveWindow.View.ShowHighlight

Pass True to have highlighted text displayed with the highlighted background.

Values: String value "True" or "False".

Name: Microsoft.Word.ActiveWindow.View.ShowInkAnnotations

Pass True to to show handwritten ink annotations in the document. Must be used
with Microsoft.Word.Document.PrintOut.Item set to print document markup.

Values: String value "True" or "False".

Name: Microsoft.Word.ActiveWindow.View.ShowInsertionsAndDeletions

Pass True to display any insertions and deletions made to a document with Track
Changes enabled. Must be used with
Microsoft.Word.ActiveWindow.View.MarkupMode set to display the changes as
balloons or inline, and Microsoft.Word.Document.PrintOut.Item set to print
document markup.

Values: String value "True" or "False".

Document Conversion Service 3.0

421 Conversion Settings

Word Converter Options

Conversion Settings - Word Printing Options

Name: Microsoft.Word.ActiveWindow.View.ShowMarkupAreaHighlight

Pass True to have the markup area that shows revision and comment ballons
displayed shaded. Applies only when
Microsoft.Word.ActiveWindow.View.MarkupMode is set to display markup as
balloons, and Microsoft.Word.Document.PrintOut.Item is set to print document
markup.

Values: String value "True" or "False".

Name: Microsoft.Word.Options.AllowA4LetterResizing

Pass True to automatically adjust Letter-sized documents to fit A4 paper, or to
adjust A4-sized documents to fit Letter paper. This only affects printing and
happens when the paper size of the printer does not match the paper size that is
set in Word.

Values: String value "True" or "False".

Conversion Settings - Word Field Replacement

Name: Microsoft.Word.ReplaceFieldDateWith

Replaces any DATE fields in the Word document with the provided string.

Values: The string value to place in the field.

Name: Microsoft.Word.ReplaceFieldTimeWith

Replaces any TIME fields in the Word document with the provided string.

Values: The string value to place in the field.

Name: Microsoft.Word.ReplaceFieldFileNameWith

Replaces any FILENAME fields in the Word document with the provided string.

Values: A string value to replace the auto file name field.

422

Document Conversion Service 3.0

Conversion Settings

Word Converter Options

Conversion Settings - Word Document Protection

Name: Microsoft.Word.UnprotectPassword

The password to use to remove the protection on the the Word document and
allow changes. This password is passed as clear text and is visible to anyone.

Values: A string value containing the password.

Name: Microsoft.Word.OpenPassword

The password to use to open a password-protected Word document. This
password is passed as clear text and is visible to anyone.

Values: A string value containing the password.

Name: Microsoft.Word.WritePassword

The password to use to allow saving changes to the Word document. This
password is passed as clear text and is visible to anyone.

Values: A string value containing the password.

Conversion Settings - Word Page Setup Printing Options

Name: Microsoft.Word.PageSetup.BookFoldPrinting

Pass True to print the document as a booklet.

Values: String value "True" or "False".

Name: Microsoft.Word.PageSetup.BookFoldPrintingSheets

The number pages to print in each booklet. This number must be a multiple of 4. If
not, the default setting of "Auto" will be used.

When using "Auto", Word will automatically determine the number of sheets per
booklet, splitting the sheets into separate booklets as necessary. Passing "All" will
print all of your pages in a single booklet.

Values: String value "Auto", "All" or the number of pages to be printed in each booklet.

Document Conversion Service 3.0

423 Conversion Settings

Word Converter Options

Conversion Settings - Word Page Setup Printing Options

Name: Microsoft.Word.PageSetup.BookFoldRevPrinting

Pass True to reverse the printing order for booklet printing, bidirectional or Asian
language documents only.

Values: String value "True" or "False".

Name: Microsoft.Word.PageSetup.BottomMargin

Set the size of the bottom margin in points.

Values: String value of the desired margin height.

Name: Microsoft.Word.PageSetup.DifferentFirstPageHeaderFooter

Pass True to use a different header on the first page.

Values: String value "True" or "False".

Name: Microsoft.Word.PageSetup.FooterDistance

Set the distance (in points) between the top of the footer to the bottom of the page.

Values: String value of the desired footer height.

Name: Microsoft.Word.PageSetup.Gutter

Set the amount of extra margin space added for binding.

Values: String value of the desired gutter width.

Name: Microsoft.Word.PageSetup.GutterPos

Sets which side of the document the gutter is placed.

Values: Left
Right
Top

424

Document Conversion Service 3.0

Conversion Settings

Word Converter Options

Conversion Settings - Word Page Setup Printing Options

Name: Microsoft.Word.PageSetup.GutterStyle

Sets how the gutters are placed; on the left for left-to-right languages or on the right
side of the document for right-to-left languages.

Values: Bidi - use bidirectional gutters for right-to-left languages.
Latin - use Latin gutter for left-to-right text.

Name: Microsoft.Word.PageSetup.HeaderDistance

Set the distance (in points) between the bottom of the header to the top of the
page.

Values: String value of the desired header height.

Name: Microsoft.Word.PageSetup.LayoutMode

Sets the layout of the text in the document. Genko, Grid and LineGrid use the
setting Microsoft.Word.PageSetup.LinesPage.

Values: Default - No grid is used to lay out text.
Genko - Text is laid out on a grid with characters aligned on the gridlines.
Grid - Text is laid out on a grid but the characters are not aligned on the gridlines.
LineGrid - Text is laid out on a grid; only the number of lines is specified.

Name: Microsoft.Word.PageSetup.LeftMargin

Set the size of the left margin in points.

Values: String value of the desired margin height.

Name: Microsoft.Word.PageSetup.LinesPage

The number of lines per page of the document. Used with the
Microsoft.Word.PageSetup.LayoutMode setting.

Values: String value of the desired number of lines per page.

Name: Microsoft.Word.PageSetup.MirrorMargins

Pass True to have the inside and outside margins of facing pages to be the same
width.

Values: String value "True" or "False".

Document Conversion Service 3.0

425 Conversion Settings

Word Converter Options

Conversion Settings - Word Page Setup Printing Options

Name: Microsoft.Word.PageSetup.OddAndEvenPagesHeaderFooter

Pass True to have different headers for odd-numbered and even-numbered pages.

Values: String value "True" or "False".

Name: Microsoft.Word.PageSetup.Orientation

Sets the orientation of the page.

Values: Landscape
Portrait

Name: Microsoft.Word.PageSetup.PageHeight

Sets the height of the page in points.

Values: String value of the desired height.

Name: Microsoft.Word.PageSetup.PageWidth

Sets the width of the page in points.

Values: String value of the desired width.

426

Document Conversion Service 3.0

Conversion Settings

Word Converter Options

Conversion Settings - Word Page Setup Printing Options

Name: Microsoft.Word.PageSetup.PaperSize

Sets the paper size.

Values: Paper10x14 - 10 in. x 14 in.
Paper11x17 - 11 in. x 17 in.
PaperA3 - A3 (297 mm x 420 mm)
PaperA4 - A4 (210 mm x 297 mm)
PaperA4Small - A4 Small (210 mm x 297 mm)
PaperA5 - A5 (148 mm x 210 mm)
PaperB4 - B4 (250 mm x 354 mm)
PaperB5 - B5 (182 mm x 257 mm)
PaperCsheet - C size sheet
PaperEnvelope10 - Envelope #10 (4-1/8 in. x 9-1/2 in.)
PaperEnvelope11 - Envelope #11 (4-1/2 in. x 10-3/8 in.)
PaperEnvelope14 - Envelope #14 (5 in. x 11-1/2 in.)
PaperEnvelope9 - Envelope #9 (3-7/8 in. x 8-7/8 in.)
PaperEnvelopeB4 - Envelope B4 (250 mm x 353 mm)
PaperEnvelopeB5 - Envelope B5 (176 mm x 250 mm)
PaperEnvelopeB6 - Envelope B6 (176 mm x 125 mm)
PaperEnvelopeC3 - Envelope C3 (324 mm x 458 mm)
PaperEnvelopeC4 - Envelope C4 (229 mm x 324 mm)
PaperEnvelopeC5 - Envelope C5 (162 mm x 229 mm)
PaperEnvelopeC6 - Envelope C6 (114 mm x 162 mm)
PaperEnvelopeC65 - Envelope C65 (114 mm x 229 mm)
PaperEnvelopeDL - Envelope DL (110 mm x 220 mm)
PaperEnvelopeItaly - Envelope (110 mm x 230 mm)
PaperEnvelopeMonarch - Envelope Monarch (3-7/8 in. x 7-1/2 in.)
PaperEnvelopePersonal - Envelope (3-5/8 in. x 6-1/2 in.)
PaperExecutive - Executive (7-1/2 in. x 10-1/2 in.)
PaperFanfoldLegalGerman - German Legal Fanfold (8-1/2 in. x 13 in.)
PaperFanfoldStdGerman - German Standard Fanfold (8-1/2 in. x 12 in.)
PaperFolio - Folio (8-1/2 in. x 13 in.)
PaperLedger - Ledger (17 in. x 11 in.)
PaperLegal - Legal (8-1/2 in. x 14 in.)
PaperLetter - Letter (8-1/2 in. x 11 in.)
PaperLetterSmall - Letter Small (8-1/2 in. x 11 in.)
PaperNote - Note (8-1/2 in. x 11 in.)
PaperQuarto - Quarto (215 mm x 275 mm)
PaperStatement - Statement (5-1/2 in. x 8-1/2 in.)
PaperTabloid - Tabloid (11 in. x 17 in.)

Name: Microsoft.Word.PageSetup.RightMargin

Set the size of the right margin in points.

Values: String value of the desired margin width.

Document Conversion Service 3.0

427 Conversion Settings

Word Converter Options

Conversion Settings - Word Page Setup Printing Options

Name: Microsoft.Word.PageSetup.SuppressEndnotes

Pass True to suppress any endnotes.

Values: String value "True" or "False".

Name: Microsoft.Word.PageSetup.TopMargin

Set the size of the top margin in points.

Values: String value of the desired margin height.

Name: Microsoft.Word.PageSetup.TwoPagesOnOne

Pass True to split the paper right down the horizontal center (for portrait) and
vertical center (for landscape) and print two "pages" per sheet of paper. This does
not shrink two pages of the document onto each single output page but rather
changes the text layout of the document to reflect each page size being one half of
the currently selected paper size.

Values: String value "True" or "False".

Name: Microsoft.Word.PageSetup.VerticalAlignment

Sets the vertical alignment of the text on each page.

Values: Bottom
Center
Justify
Top

428

Document Conversion Service 3.0

Conversion Settings

Excel Converter Options

Excel Converter Options

These options control the behavior of the Excel converter used by Document Conversion Service. If the
workbook, or any spreadsheet in the workbook is password protected and the password is not known, the
options are ignored. The settings cannot be applied to a protected workbook or spreadsheet.

Table values in bold text are the default value for that setting. Not all settings have default values; these
settings are optional and the appropriate setting in the spreadsheet being printed will be used.

Sample Profile

<?xml version="1.0" encoding="utf-8"?>
<Profile Type="0"
 DisplayName="TIFF 300dpi Excel Charts First, replace dates "
 Description ="Prints Excel charts, sheets with grid lines.">
 <Settings>

 <!-- Print Charts then workbooks, show grid lines -->
 <add Name ="Microsoft.Excel.PrintOut" Value="PrintOutChartsThenWorkbook"/>
 <add Name ="Microsoft.Excel.PageSetup.PrintGridlines" Value="True"/>

 <!-- Replace header/footer date fields with <AUTODATE> string -->
 <add Name ="Microsoft.Excel.ReplaceFieldDateWith"
 Value="<AUTODATE>"/>
 <add Name ="Microsoft.Excel.PageSetup.LeftHeader"
 Value="Sheet: &A"/>

 <!-- Output file options -->
 <add Name="Devmode settings;Resolution" Value="300"/>
 <add Name="Save;Output File Format" Value="TIFF Multipaged"/>
 ...

 </Settings>
</Profile>

Code Sample - C#

PNDocConvQueueServiceLib.PNDocConvQueueItem item = null;

// Create the conversion item
item = new PNDocConvQueueServiceLib.PNDocConvQueueItem();

// Set conversion settings
item.Set("Microsoft.Excel.PrintOut", "PrintOutChartsThenWorkbook");
item.Set("Microsoft.Excel.PageSetup.PrintGridlines", "True");

// Replace header/footer date fields with <AUTODATE> string
item.Set("Microsoft.Excel.ReplaceFieldDateWith", "<AUTODATE>");
item.Set("Microsoft.Excel.PageSetup.LeftHeader", "Sheet: &A");

item.Set("Devmode settings;Resolution", "300");
item.Set("Save;Output File Format", "TIFF Multipaged");
...
// convert the file
item.Convert("Microsoft Excel",
 @"C:\Test\Report.xlsx",
 @"C:\Test\Out\ConvertedReport");

Document Conversion Service 3.0

429 Conversion Settings

Excel Converter Options

Code Sample - VB.NET

Dim item As PNDocConvQueueServiceLib.IPNDocConvQueueItem

 ' Create the conversion item
item = New PNDocConvQueueServiceLib.PNDocConvQueueItem()

' Set conversion settings
item.Set("Microsoft.Excel.PrintOut", "PrintOutChartsThenWorkbook")
item.Set("Microsoft.Excel.PageSetup.PrintGridlines", "True")

' Replace header/footer date fields with <AUTODATE> string
item.Set("Microsoft.Excel.ReplaceFieldDateWith", "<AUTODATE>")
item.Set("Microsoft.Excel.PageSetup.LeftHeader", "Sheet: &A");

item.Set("Devmode settings;Resolution", "300")
item.Set("Save;Output File Format", "TIFF Multipaged")
...
' convert the file
item.Convert("Microsoft Excel", _
 "C:\Test\Report.xlsx", _
 "C:\Test\Out\ConvertedReport")

Conversion Settings - Excel General Formatting & Printing Options

Name: Microsoft.Excel.PrintOut

Choose what part of the Excel spreadsheet to print.
The settings

For PrintOutChartsOnly, PrintOutChartsThenWorkbook and
PrintOutWorkbookThenCharts, the option
Microsoft.Excel.PrintOut.PrintEmbeddedChartsFirst controls if embedded charts
are printed before or after any chart tabs in the spreadsheet.

Values: PrintOutWorkbookOnly - prints the entire workbook just as Excel does.

PrintOutActiveSheetOnly - prints only the last active (selected) sheet in the
workbook. This is the selected tab at the time the Excel file was last saved.

PrintOutSelectedSheetsOnly - prints only the selected sheets in the workbook.
Multiple sheets can be selected using the Ctrl+Left Click with the mouse.

PrintOutSheetsWithPrintAreasOnly - prints only sheets that have a print area set.

PrintOutChartsOnly - prints any charts tabs and embedded charts in the workbook.
PrintOutChartsThenWorkbook - prints all chart tabs and embedded charts, then
prints all sheets in the workbook.
PrintOutWorkbookThenCharts - prints all sheets in the workbook, then prints all
chart tabs and embedded charts.

For the three options above, embedded charts can be before or after other charts,
as specified by the Microsoft.Excel.PrintOut.PrintEmbeddedChartsFirst setting.

430

Document Conversion Service 3.0

Conversion Settings

Excel Converter Options

Conversion Settings - Excel General Formatting & Printing Options

Name: Microsoft.Excel.PrintHiddenWorksheets

Choose whether to print hidden worksheets or not.

Values: False - do not print hidden worksheets.
True - print hidden worksheets.

Name: Microsoft.Excel.PrintOut.PrintEmbeddedChartsFirst

When printing embedded charts, determines if the embedded charts are printed
before or after any chart tabs in the spreadsheet. Applies only when
Microsoft.Excel.PrintOut is set to print charts.

Values: False - print embedded charts after all other charts.
True - print embedded charts first.

Name: Microsoft.Excel.PrintSheetsRangeByIndex

The sheet numbers and ranges to include when printing. Separate each number
and range with a comma. For example, "1, 3-5" prints sheet 1 and sheets 3 through
5. Numbers in the range exceeding the sheet count of the source document are
ignored.

Sheet numbers in the range are for visible sheets unless
Microsoft.Excel.PrintHiddenWorksheets is true, then hidden sheets are included.

Applies to the Microsoft.Excel.PrintOut options PrintOutWorkbookOnly,
PrintOutChartsOnly, PrintOutChartsThenWorkbook and
PrintOutWorkbookThenCharts. The range applies to both sheets and charts in the
workbook.

This print filter can be combined with Microsoft.Excel.PrintSheetsRangeByName,
Microsoft.Excel.PrintFirstNSheets, Microsoft.Excel.PrintLastNSheets, and
Microsoft.Excel.PrintIfSheetNameMatchesRegex.

Values: The string representing the numbered sheet range.

Document Conversion Service 3.0

431 Conversion Settings

Excel Converter Options

Conversion Settings - Excel General Formatting & Printing Options

Name: Microsoft.Excel.PrintSheetsRangeByName

The names of the sheets and charts to include when printing, separated with a
colon symbol (:) to print multiple sheets. Names not in the worksheet collection are
ignored.

Applies only to visible sheets unless Microsoft.Excel.PrintHiddenWorksheets is
true.

Applies to the Microsoft.Excel.PrintOut options PrintOutWorkbookOnly,
PrintOutChartsOnly, PrintOutChartsThenWorkbook and
PrintOutWorkbookThenCharts. The name selection applies to both sheets and
charts in the workbook.

This print filter can be combined with Microsoft.Excel.PrintSheetsRangeByIndex,
Microsoft.Excel.PrintFirstNSheets, Microsoft.Exce.PrintLastNSheets and
Microsoft.Excel.PrintIfSheetNameMatchesRegex.

Values: The string of sheet or chart names, such as "Sheet1:Sheet3:Chart1".

Name: Microsoft.Excel.PrintFirstNSheets

Includes the designated number of sheets or charts, starting at the beginning of the
workbook. If the workbook has less sheets (tabs) in total than the requested
number, all sheets are printed.

Applies only to visible sheets unless Microsoft.Excel.PrintHiddenWorksheets is
true.

Applies to the Microsoft.Excel.PrintOut options PrintOutWorkbookOnly,
PrintOutChartsOnly, PrintOutChartsThenWorkbook and
PrintOutWorkbookThenCharts. Applies to both sheets and charts in the workbook.

This print filter can be combined with Microsoft.Excel.PrintSheetsRangeByName,
Microsoft.Excel.PrintSheetsRangeByIndex, Microsoft.Excel.PrintLastNSheets, and
Microsoft.Excel.PrintIfSheetNameMatchesRegex.

Values: The number of sheets to print.

432

Document Conversion Service 3.0

Conversion Settings

Excel Converter Options

Conversion Settings - Excel General Formatting & Printing Options

Name: Microsoft.Excel.PrintLastNSheets

Includes the last designated number of sheets or charts, starting in the middle and
going to the end of the workbook. If the workbook has less sheets (tabs) in total
than the requested number, all sheets are printed.

Applies only to visible sheets unless Microsoft.Excel.PrintHiddenWorksheets is
true.

Applies to the Microsoft.Excel.PrintOut options PrintOutWorkbookOnly,
PrintOutChartsOnly, PrintOutChartsThenWorkbook and
PrintOutWorkbookThenCharts. Applies to both sheets and charts in the workbook.

This print filter can be combined with Microsoft.Excel.PrintSheetsRangeByName,
Microsoft.Excel.PrintSheetsRangeByIndex, Microsoft.Excel.PrintFirstNSheets and
Microsoft.Excel.PrintIfSheetNameMatchesRegex.

Values: The number of sheets to print.

Name: Microsoft.Excel.PrintIfSheetNameMatchesRegex

Includes the sheet or chart if its name matches the regular expression.

Applies only to visible sheets unless Microsoft.Excel.PrintHiddenWorksheets is
true.

Applies to the Microsoft.Excel.PrintOut options PrintOutWorkbookOnly,
PrintOutChartsOnly, PrintOutChartsThenWorkbook and
PrintOutWorkbookThenCharts. Applies to both sheets and charts in the workbook.

This print filter can be combined with Microsoft.Excel.PrintSheetsRangeByIndex,
Microsoft.Excel.PrintSheetsRangeByName, Microsoft.Excel.PrintFirstNSheets and
Microsoft.Excel.PrintLastNSheets.

Values: The regular expression to match the sheet name against.

Name: Microsoft.Excel.AutoFit.KeepEmbeddedChartScaling
Applies only when Microsoft.Excel.AutoFitRows and
Microsoft.Excel.AutoFitColumns are set and if one or more embedded charts are
on the sheet. When True, the width and height of any rows and columns under
embedded charts are not auto-adjusted so that the chart does not change shape.
Default is True.

Values: False - autofit all rows or columns, even under embedded charts. This can cause
any charts to be squished or stretched.
True - do not autofit rows and columns under embedded charts; charts will keep
their original scaling on the sheet.

Document Conversion Service 3.0

433 Conversion Settings

Excel Converter Options

Conversion Settings - Excel General Formatting & Printing Options

Name: Microsoft.Excel.Worksheet.IncludeCellFormulasAsComments

For any cell that contains a formula, the formula added to that cell as a comment. If
the cell has a comment, the formula is inserted with a carriange return before any
current comment text. This must be used with
Microsoft.Excel.PageSetup.PrintComments set to PrintSheetEnd to include the cell
formulas listed by cell reference at the end of each sheet.

To append the formula to the cell contents instead of inserting at the beginning, set
Microsoft.Excel.Worksheet.PrependCellFormulaToCommentText to False.

Values: False - do not add/update existing comments with the cell formula.
True - add/update existing comment with the cell formula.

Name: Microsoft.Excel.Worksheet.PrependCellFormulaToCommentText

When using Microsoft.Excel.Worksheet.IncludeCellFormulasAsComments, the
formula is prepended to the beginning of any existing comment text by default. To
append the formula to the end of any existing comment text, set this option to
False.

Values: False - append the cell formula to the end of any existing comment text.
True - prepend the cell formula to the beginning of any existing comment text.

Name: Microsoft.Excel.Worksheet.PrintOut.IgnorePrintAreas

When set to True, any print areas set on the worksheet will be ignored and the
entire worksheet printed. Use with
Microsoft.Excel.Worksheet.PrintOut.ResetAllPageBreaks to print the worksheet
differently from the printing options in the worksheet.

Values: False - prints using any print area set on the worksheet.
True - prints the entire worksheet.

Name: Microsoft.Excel.Worksheet.ShowAllData

Makes all rows of any filtered data visible. This setting only applies to filtered data
in the worksheet. To show hidden columns or rows use
Microsoft.Excel.AutoFitRows and Microsoft.Excel.AutoFitColumns.

Values: False - Leave data filtered (hidden).
True - Show all the data on the worksheet.

434

Document Conversion Service 3.0

Conversion Settings

Excel Converter Options

Conversion Settings - Excel General Formatting & Printing Options

Name: Microsoft.Excel.Worksheet.ResetAllPageBreaks

Set as True to resets all page breaks on each worksheet. Use with
Microsoft.Excel.Worksheet.PrintOut.IgnorePrintAreas to print the worksheet
differently from the printing options in the worksheet.

Values: False - Leave page breaks alone.
True - Reset all page breaks.

Name: Microsoft.Excel.AutoFitRows

If set to True then the height of the rows in the spreadsheet will be adjusted
automatically to fit the contents of the cells. This setting will allow you to show all
hidden rows in the worksheet.

Values: String value "True" or "False".

Name: Microsoft.Excel.AutoFitRows.Adjust

This setting is only applied when Microsoft.Excel.AutoFitRows is set to "True" and
allows you to add the height specified (in points) to all rows after they have been
auto-fit. The maximum row height allowed in Excel is 409 points. It is not normally
needed to add height to each row and adding height to each row can be a time-
consuming operation; only use this option if absolutely needed.

Values: String value of the amount, in points, by which to adjust the row height.

Name: Microsoft.Excel.AutoFitColumns

If set to True then the width the columns in the spreadsheet will be adjusted to fit
the contents of the cells. This setting will allow you to show all hidden columns in
the worksheet.

Values: String value "True" or "False".

Name: Microsoft.Excel.AutoFitColumns.Adjust

This setting is only applied when Microsoft.Excel.AutoFitColumns is set to "True"
and allows you to add the width specified (in points) to all columns after they have
been auto-fit. The maximum column width allowed in Excel is 255 points. It is not
normally needed to add width to each column and adding width to each column can
be a time-consuming operation; only use this option if absolutely needed.

Values: String value of the amount, in points, by which to adjust the column width.

Document Conversion Service 3.0

435 Conversion Settings

Excel Converter Options

Conversion Settings - Excel General Formatting & Printing Options

Name: Microsoft.Excel.AutoFit.KeepEmbeddedChartScaling

Only applies when auto-fit rows and columns is enabled. When set to its default of
"True", autofit is not applied to any rows and/or columns that are under any
embedded charts on the sheet. All other rows and columns are auto-fit. This allows
the embedded charts to maintain the scale they were originally set at when placed
on the spreadsheet. If set to "False", the chart will change size depending on the
new height and width of the underlying rows and columns.

Values: String value "True" or "False".

Name: Microsoft.Excel.UnfreezePanes

If the spreadsheeet has any non-scrolling, "frozen" panes, pass "True" to unfreeze
them before printing.

Values: String value "True" or "False".

Name: Microsoft.Excel.ClearFormatsOnEmptyRowsOnTop

Clears the formatting of any empty rows (cells with no data) at the top of the
spreadsheet so that only rows with data in them are printed.

Values: String value "True" or "False".

Name: Microsoft.Excel.ClearFormatsOnEmptyRowsOnBottom

Clears the formatting of any empty rows (cells with no data) at the bottom of the
spreadsheet so that only rows with data in them are printed.

Values: String value "True" or "False".

Name: Microsoft.Excel.ClearFormatsOnEmptyColumnsOnLeft

Clears the formatting of any empty columns (cells with no data) on the left hand
side of the spreadsheet so that only columns with data in them are printed.

Values: String value "True" or "False".

Name: Microsoft.Excel.ClearFormatsOnEmptyColumnsOnRight

Clears the formatting of any empty columns (cells with no data) on the right hand
side of the spreadsheet so that only columns with data in them are printed.

Values: String value "True" or "False".

436

Document Conversion Service 3.0

Conversion Settings

Excel Converter Options

Conversion Settings - Excel General Formatting & Printing Options

Name: Microsoft.Excel.RemoveBackgroundColors

Clears the background colors and fills for all cells. Leaves text color and borders
unchanged.

Note: This does not apply to cells that have conditional formatting applied.

Values: String value "True" or "False".

Name: Microsoft.Excel.SetAllTextAsBlack

Sets all text to black.

Note: This does not apply to cells that have conditional formatting applied.

Values: String value "True" or "False".

Name: Microsoft.Excel.ClearTableStyle

Clears the table styling from any columns or rows in the spreadsheet. Leaves the
cell data, formatting and formulas in place. This can be a time-consuming
operation as the table formatting is copied to each cell; only use this option if
absolutely needed. To do the same but also remove the formatting, use
Microsoft.Excel.ClearTableStyleAndFormatting.

Values: String value "True" or "False".

Name: Microsoft.Excel.ClearTableStyleAndFormatting

Clears the table styling and any table formatting from any columns or rows in the
spreadsheet. Leaves the cell data and formulas in place.

Values: String value "True" or "False".

Name: Microsoft.Excel.ClearAllConditionalFormatting

Clears all conditional formatting applied to any cells. This includes removing
background colors and text styling, color scales, data bars and icon sets.

Note: This does not apply to any spreadsheet that is protected or shared.

Values: String value "True" or "False".

Document Conversion Service 3.0

437 Conversion Settings

Excel Converter Options

Conversion Settings - Excel General Formatting & Printing Options

Name: Microsoft.Excel.TrackChanges.HighlightChangesOnScreen

If Track Changes has been enabled for the workbook, any cell on any spreadsheet
that has been changed will be highlighted.

Values: String value "True" or "False".

Name: Microsoft.Excel.TrackChanges.ListChangesOnNewSheet

If Track Changes has been enabled for the workbook, setting this to True will
create a new temporary, protected spreadsheet that lists all of changes made to
the workbook. If not using the English version of Excel,
Microsoft.Excel.TrackChanges.ExcelTrackChangesWhoParameter will also need
to be set.

Values: String value "True" or "False".

Name: Microsoft.Excel.TrackChanges.ExcelTrackChangesWhoParameter

When using an Office installation in a language other than English, this option
must specify the word "Everyone" in that that language to list the tracked
changesfor all users. The default for this setting is "Everyone". The 5 most
common languages are listed below, or you can find the needed parameter on the
Hightlight Changes dialog in your version of Excel. The English version is shown
below.

Values: English - Everyone
French - Tous, Tout le monde
Italian - Tutti
German - Jeder
Spanish - Todos

438

Document Conversion Service 3.0

Conversion Settings

Excel Converter Options

Conversion Settings - Excel Page Setup Printing Options

Name: Microsoft.Excel.PageSetup.AlignMarginsHeaderFooter

Have Excel align the header and the footer with the margins set in the page setup
options.

Values: String value "True" or "False".

Name: Microsoft.Excel.PageSetup.BlackAndWhite

Print the Excel document in black and white.

Values: String value "True" or "False".

Name: Microsoft.Excel.PageSetup.BottomMargin

Set the size of the bottom margin in points.

Values: String value of the desired margin height.

Name: Microsoft.Excel.PageSetup.CenterFooter

The text to display in the center footer area of the worksheet.

Values: String value of the text to display.

Name: Microsoft.Excel.PageSetup.CenterHeader

The text to display in the center header area of the worksheet.

Values: String value of the text to display.

Name: Microsoft.Excel.PageSetup.CenterHorizontally

Center the worksheet horizontally on the page when printed.

Values: String value "True" or "False".

Name: Microsoft.Excel.PageSetup.CenterVertically

Center the worksheet vertically on the page when printed.

Values: String value "True" or "False".

Document Conversion Service 3.0

439 Conversion Settings

Excel Converter Options

Conversion Settings - Excel Page Setup Printing Options

Name: Microsoft.Excel.PageSetup.DifferentFirstPageHeaderFooter

If this is True a different header or footer is used for the first page of the worksheet
(applies to Office 2007 or higher).

Values: String value "True" or "False".

Name: Microsoft.Excel.PageSetup.Draft

Prints the worksheet without graphics when set to True.

Values: String value "True" or "False".

Name: Microsoft.Excel.PageSetup.FirstPageNumber

Sets the first page number that will be used when this sheet is printed.

Values: String value of the page number to start with.

Name: Microsoft.Excel.PageSetup.FitToPagesTall

Set the number of pages tall the worksheet will scale to when printed. Ignored
when Microsoft.Excel.PageSetup.Zoom is set to True.

Values: String value of the number of pages tall to use or "False" to use the scaling set in
the Microsoft.Excel.PageSetup.FitToPagesWide setting.

Name: Microsoft.Excel.PageSetup.FitToPagesWide

Set the number of pages wide the worksheet will scale to when printed. Ignored
when Microsoft.Excel.PageSetup.Zoom is set to True.

Values: String value of the number of pages wide to use or "False" to use the scaling set in
the Microsoft.Excel.PageSetup.FitToPagesTall setting.

Name: Microsoft.Excel.PageSetup.FooterMargin

Sets the distance, in points, from the bottom of the page to the footer.

Values: String value of the desired margin height.

440

Document Conversion Service 3.0

Conversion Settings

Excel Converter Options

Conversion Settings - Excel Page Setup Printing Options

Name: Microsoft.Excel.PageSetup.HeaderMargin

Sets the distance, in points, from the top of the page to the header.

Values: String value of the desired margin height.

Name: Microsoft.Excel.PageSetup.LeftFooter

The text to display in the left footer area of the worksheet.

Values: String value of the text to display.

Name: Microsoft.Excel.PageSetup.LeftHeader

The text to display in the left header area of the worksheet.

Values: String value of the text to display.

Name: Microsoft.Excel.PageSetup.LeftMargin

Set the size of the left margin in points.

Values: String value of the desired margin height.

Name: Microsoft.Excel.PageSetup.OddAndEvenPagesHeaderFooter

Set to True if different headers and footers have been set for odd-numbered and
even-numbered pages.

Values: String value "True" or "False".

Name: Microsoft.Excel.PageSetup.Order

Choose the page order when printing multiple spreadsheet pages per page.

Values: DownThenOver - print the spreadsheet pages down then across the page.
OverThenDown - print the spreadsheet pages across the page, then down.

Name: Microsoft.Excel.PageSetup.Orientation

Choose the orientation of the Excel spreadsheet.

Values: Landscape
Portrait

Document Conversion Service 3.0

441 Conversion Settings

Excel Converter Options

Conversion Settings - Excel Page Setup Printing Options

Name: Microsoft.Excel.PageSetup.PaperSize

Sets the size of the paper the worksheet will be printed on.

Values: Paper10x14 - 10 in. x 14 in.
Paper11x17 - 11 in. x 17 in.
PaperA3 - A3 (297 mm x 420 mm)
PaperA4 - A4 (210 mm x 297 mm)
PaperA4Small - A4 Small (210 mm x 297 mm)
PaperA5 - A5 (148 mm x 210 mm)
PaperB4 - B4 (257 mm x 364 mm)
PaperB5 - B5 (182 mm x 257 mm)
PaperCsheet - C size sheet
PaperDsheet - D size sheet
PaperEnvelope10 - Envelope #10 (4-1/8 in. x 9-1/2 in.)
PaperEnvelope11 - Envelope #11 (4-1/2 in. x 10-3/8 in.)
PaperEnvelope12 - Envelope #12 (4-1/2 in. x 11 in.)
PaperEnvelope14 - Envelope #14 (5 in. x 11-1/2 in.)
PaperEnvelope9 - Envelope #9 (3-7/8 in. x 8-7/8 in.)
PaperEnvelopeB4 - Envelope B4 (250 mm x 353 mm)
PaperEnvelopeB5 - Envelope B5 (176 mm x 250 mm)
PaperEnvelopeB6 - Envelope B6 (176 mm x 125 mm)
PaperEnvelopeC3 - Envelope C3 (324 mm x 458 mm)
PaperEnvelopeC4 - Envelope C4 (229 mm x 324 mm)
PaperEnvelopeC5 - Envelope C5 (162 mm x 229 mm)
PaperEnvelopeC6 - Envelope C6 (114 mm x 162 mm)
PaperEnvelopeC65 - Envelope C65 (114 mm x 229 mm)
PaperEnvelopeDL - Envelope DL (110 mm x 220 mm)
PaperEnvelopeItaly - Envelope (110 mm x 230 mm)
PaperEnvelopeMonarch - Envelope Monarch (3-7/8 in. x 7-1/2 in.)
PaperEnvelopePersonal - Envelope (3-5/8 in. x 6-1/2 in.)
PaperEsheet - E size sheet
PaperExecutive - Executive (7-1/2 in. x 10-1/2 in.)
PaperFanfoldLegalGerman - German Legal Fanfold (8-1/2 in. x 12 in.)
PaperFanfoldStdGerman - German Legal Fanfold (8-1/2 in. x 13 in.)
PaperFanfoldUS - U.S. Standard Fanfold (14-7/8 in. x 11 in.)
PaperFolio - Folio (8-1/2 in. x 13 in.)
PaperLedger - Ledger (17 in. x 11 in.)
PaperLegal - Legal (8-1/2 in. x 14 in.)
PaperLetter - Letter (8-1/2 in. x 11 in.)
PaperLetterSmall - Letter Small (8-1/2 in. x 11 in.)
PaperNote - Note (8-1/2 in. x 11 in.)
PaperQuarto - Quarto (215 mm x 275 mm)
PaperStatement - Statement (5-1/2 in. x 8-1/2 in.)
PaperTabloid - Tabloid (11 in. x 17 in.)

442

Document Conversion Service 3.0

Conversion Settings

Excel Converter Options

Conversion Settings - Excel Page Setup Printing Options

Name: Microsoft.Excel.PageSetup.PrintArea

Sets the range to be printed, as a string using Excel's A1-style references.

Values: String containing the print area. Pass an empty string to print the entire worksheet.

Name: Microsoft.Excel.PageSetup.PrintComments

Determines where any comments in the worksheet are printed.

Values: PrintSheetEnd - print the comments as notes at the end of the worksheet.
PrintInPlace - comments are printed in-place in the worksheet as pop-up notes.
PrintNoComments - comments are not printed.

Name: Microsoft.Excel.PageSetup.PrintErrors

Set the type of print error displayed.

Values: PrintErrorsDisplayed - display all print errors.
PrintErrorsBlank - print errors are blank.
PrintErrorsDash - display print errors as dashes.
PrintErrorsNA - display print errors as not available.

Name: Microsoft.Excel.PageSetup.PrintGridlines

If set to True then grid lines will be printed on each spreadsheet.

Values: String value "True" or "False".

Name: Microsoft.Excel.PageSetup.PrintHeadings

If set to True then column and row headings will be printed on each spreadsheet.

Values: String value "True" or "False".

Name: Microsoft.Excel.PageSetup.PrintNotes

Set to True to print cell notes as end notes with the worksheet.

Values: String value "True" or "False".

Name: Microsoft.Excel.PageSetup.PrintQuality

Sets the print quality, or DPI, of the worksheet. This is different from the DevMode
settings;Resolution setting in the Devmode settings section.

Document Conversion Service 3.0

443 Conversion Settings

Excel Converter Options

Conversion Settings - Excel Page Setup Printing Options

Values: 1200, 720, 600, 400, 360, 300, 240, 200, 150, 120, 100, 75, 60, 50

Name: Microsoft.Excel.PageSetup.PrintTitleColumns

Sets the columns that contain the cells to be repeated on the left side of each page
as a string using Excel's A1-style references.

Values: String containing the columns to use as title columns. Pass an empty string to turn
off title columns.

Name: Microsoft.Excel.PageSetup.PrintTitleRows

Sets the rows that contain the cells to be repeated on the top of each page as a
string using Excel's A1-style references.

Values: String containing the rows use as title rows. Pass an empty string to turn off title
rows.

Name: Microsoft.Excel.PageSetup.RightFooter

The text to display in the right footer area of the worksheet.

Values: String value of the text to display.

Name: Microsoft.Excel.PageSetup.RightHeader

The text to display in the right header area of the worksheet.

Values: String value of the text to display.

Name: Microsoft.Excel.PageSetup.RightMargin

Set the size of the left margin in points.

Values: String value of the desired margin width.

Name: Microsoft.Excel.PageSetup.ScaleWithDocHeaderFooter

If set to True then the header and footer will be scaled with the document when the
size of the document changes.

Values: String value "True" or "False".

444

Document Conversion Service 3.0

Conversion Settings

Excel Converter Options

Conversion Settings - Excel Page Setup Printing Options

Name: Microsoft.Excel.PageSetup.TopMargin

Set the size of the top margin in points.

Values: String value of the desired margin height.

Name: Microsoft.Excel.PageSetup.Zoom

Sets a percentage (between 10 and 400 percent) by which the worksheet will be
scaled when printed.

Values: String value representing the zoom percentage, or "False" to use the
Microsoft.Excel.PageSetup.FitToPagesTall and
Microsoft.Excel.PageSetup.FitToPagesWide properties instead.

Conversion Settings - Excel Field Replacement

Name: Microsoft.Excel.ReplaceFieldDateWith

Replaces any DATE fields in the header and footer in the Excel document with the
provided string.

Values: The string value to place in the field.

Name: Microsoft.Excel.ReplaceFieldTimeWith

Replaces any TIME fields in the header and footer in the Excel document with the
provided string.

Values: The string value to place in the field.

Name: Microsoft.Excel.ReplaceFieldFileNameWith

Replaces any FILENAME fields in the header and footer in the Excel document
with the provided string.

Values: A string value to replace the auto file name field.

Document Conversion Service 3.0

445 Conversion Settings

Excel Converter Options

Conversion Settings - Excel Field Replacement

Name: Microsoft.Excel.ReplaceFormulasWithAutoDateAndTimeAsString

Replaces any cells containing a formula with the functions TODAY() and NOW()
with the provided string. This will replace the entire cell formula.

Values: A string value to display as the cell contents.

Conversion Settings - Document Protection

Name: Microsoft.Excel.UnprotectPassword

The password is used to unprotect the Excel document and allow changes. This
password is passed as clear text and is visible to anyone.

Values: A string value containing the password.

Name: Microsoft.Excel.OpenPassword

The password is used to open a password-protected Excel document. This
password is passed as clear text and is visible to anyone.

Values: A string value containing the password.

Name: Microsoft.Excel.WritePassword

The password is used to allow saving changes to the Excel document. This
password is passed as clear text and is visible to anyone.

Values: A string value containing the password.

Name: Microsoft.Excel.RemoveDocumentProtection

Does not apply to Excel 2013 and later versions.

Temporarily remove any workbook or spreadsheet protection that may be set on
the document. This allows Excel printing and formatting options to be applied.

Values: String value "True" or "False". Default is True for Excel 2010 and previous
versions. Ignored for Office 2013 and later.

446

Document Conversion Service 3.0

Conversion Settings

Excel Converter Options

Conversion Settings - Document Protection

Name: Microsoft.Excel.SkipFileValidation

Office File Validation is a security feature added starting with Microsoft Office 2010.
 This feature checks Office files created with older versions to ensure they were
safe to open before actually opening them.
Files can be marked as invalid if they are corrupt or contain malicious code.
Unfortunately, this can also mean that files created previous versions of Office can
mistakenly be tagged as invalid when they are not.
You can use this setting to disable this feature.

We do not recommend enabling this feature; you do so at your own risk. Use
with caution and only disable if you know and trust the source of the Excel
files.

Values: False - Files are always validated upon opening.
True - Skip file validation upon opening. This setting is not recommended.

Header and Footer Formatting Codes

The following formatting codes are used to customize the header and footer contents of the spreadsheet
with page numbers, the date, the name of the sheet, or the name and path of the file taken from the Excel
file being converted.

Applies to these settings:

· Microsoft.Excel.PageSetup.LeftHeader

· Microsoft.Excel.PageSetup.CenterHeader

· Microsoft.Excel.PageSetup.RightHeader

· Microsoft.Excel.PageSetup.LeftFooter

· Microsoft.Excel.PageSetup.CenterFooter

· Microsoft.Excel.PageSetup.RightFooter

These formatting codes are applied to the header and footer contents after any auto date, time or
filename replacement is applied from the settings Microsoft.Excel.ReplaceFieldDateWith,
Microsoft.Excel.ReplaceFieldTimeWith, and Microsoft.Excel.ReplaceFieldFileNameWith.

This means that if you use an autodate, autotime or file name formatting code in a custom header, you will
get the autodate, autotime or file name in the header or footer, and not the replacement string.

Header and Footer Formatting Codes

&P Current page number

&N Number of pages

Document Conversion Service 3.0

447 Conversion Settings

Excel Converter Options

&D Auto date

&T Auto time

&Z&F Path to file

&F File name

&A Sheet name

448

Document Conversion Service 3.0

Conversion Settings

PowerPoint Converter Options

PowerPoint Converter Options

These options control the behavior of the PowerPoint converter used by Document Conversion Service.
Table values in bold text are the default value for that setting. Not all settings have default values; these
settings are optional and the appropriate setting in the presentation being printed will be used.

Sample Profile

<?xml version="1.0" encoding="utf-8"?>
<Profile Type="0"
 DisplayName="TIFF 300dpi Powerpoint Markup, replace dates "
 Description ="Prints Powerpoint slides with comments and tracking visible.">
 <Settings>

 <add Name ="Microsoft.PowerPoint.PageSetup.FirstSlideNumber" Value="2"/>
 <add Name ="Microsoft.PowerPoint.PageSetup.NotesOrientation"
 Value="OrientationVertical"/>
 <add Name ="Microsoft.PowerPoint.PrintOptions.FitToPage" Value="True"/>

 <!-- Output file options -->
 <add Name="Devmode settings;Resolution" Value="300"/>
 <add Name="Save;Output File Format" Value="TIFF Multipaged"/>
 ...

 </Settings>
</Profile>

Code Sample - C#

PNDocConvQueueServiceLib.PNDocConvQueueItem item = null;

// Create the conversion item
item = new PNDocConvQueueServiceLib.PNDocConvQueueItem();

// Set conversion settings
item.Set("Microsoft.PowerPoint.PageSetup.FirstSlideNumber", "2");
item.Set("Microsoft.PowerPoint.PageSetup.NotesOrientation",
 "OrientationVertical");
item.Set("Microsoft.PowerPoint.PrintOptions.FitToPage",
 "True");
item.Set("Devmode settings;Resolution", "300");
item.Set("Save;Output File Format", "TIFF Multipaged");
...
// convert the file
item.Convert("Microsoft PowerPoint", _
 @"C:\Test\Report.pptx", _
 @"C:\Test\Out\ConvertedPresentation");

Document Conversion Service 3.0

449 Conversion Settings

PowerPoint Converter Options

Code Sample - VB.NET

Dim item As PNDocConvQueueServiceLib.IPNDocConvQueueItem

 ' Create the conversion item
item = New PNDocConvQueueServiceLib.PNDocConvQueueItem()

' Set conversion settings
item.Set("Microsoft.PowerPoint.PageSetup.FirstSlideNumber", "2")
item.Set("Microsoft.PowerPoint.PageSetup.NotesOrientation",
 "OrientationVertical")
item.Set("Microsoft.PowerPoint.PrintOptions.FitToPage",
 "True")
item.Set("Devmode settings;Resolution", "300")
item.Set("Save;Output File Format", "TIFF Multipaged")
...
' convert the file
item.Convert("Microsoft PowerPoint", _
 "C:\Test\Report.pptx", _
 "C:\Test\Out\ConvertedPresentation")

Conversion Settings - PowerPoint Page Setup

Name: Microsoft.PowerPoint.PageSetup.FirstSlideNumber

Sets the slide number for the first slide in the presentation.

Values: String value containing the starting number, such as "2".

Name: Microsoft.PowerPoint.PageSetup.NotesOrientation

Sets the printed orientation of notes pages, handouts, and outlines for the specified
presentation. If the value passed down does not match the strings below, the
orientation will default to OrientationHorizontal.

Values: OrientationHorizontal
OrientationVertical
OrientationMixed

Name: Microsoft.PowerPoint.PageSetup.SlideOrientation

Sets the printed orientation of slides in the presentation. If the value passed down
does not match the strings below, the orientation will default to
OrientationHorizontal.

Values: OrientationHorizontal
OrientationVertical
OrientationMixed

450

Document Conversion Service 3.0

Conversion Settings

PowerPoint Converter Options

Conversion Settings - PowerPoint Page Setup

Name: Microsoft.PowerPoint.PageSetup.SlideHeight

Sets the height of the slide in points.

Values: String value of the desired slide height.

Name: Microsoft.PowerPoint.PageSetup.SlideSize

Sets the slide size for the specified presentation

Values: SlideSizeOnScreen - On Screen
SlideSizeLetterPaper - Letter Paper
SlideSizeA4Paper - A4 Paper
SlideSize35MM - 35MM
SlideSizeOverhead - Overhead
SlideSizeBanner - Banner
SlideSizeLedgerPaper - Ledger Paper
SlideSizeA3Paper - A3 Paper
SlideSizeB4ISOPaper - B4 ISO Paper
SlideSizeB5ISOPaper - B5 ISO Paper
SlideSizeB4JISPaper - B4 JIS Paper
SlideSizeB5JISPaper - B5 JIS Paper
SlideSizeHagakiCard - Hagaki Card

Name: Microsoft.PowerPoint.PageSetup.SlideWidth

Sets the width of the slide in points.

Values: String value of the desired slide width.

Conversion Settings - PowerPoint Print Options

Name: Microsoft.PowerPoint.PrintOptions.FitToPage

If set to "True" then the slides will be scaled to fill the page they're printed on.

Values: String value "True" or "False".

Name: Microsoft.PowerPoint.PrintOptions.FrameSlides

If set to "True" then a thin frame is placed around the border of the printed slides.

Values: String value "True" or "False".

Document Conversion Service 3.0

451 Conversion Settings

PowerPoint Converter Options

Conversion Settings - PowerPoint Print Options

Name: Microsoft.PowerPoint.PrintOptions.HandoutOrder

Sets the page layout order for printed handouts that show multiple slides on one
page.

Values: PrintHandoutVerticalFirst
PrintHandoutHorizontalFirst

Name: Microsoft.PowerPoint.PrintOptions.HighQuality

If set to "True" then the slides will be printed in high quality.

Values: String value "True" or "False".

Name: Microsoft.PowerPoint.PrintOptions.OutputType

Sets which component (slides, handouts, notes pages, or an outline) of the
presentation is to be printed, and in the case of handouts, how many slides per
page.

Values: PrintOutputSlides - print slides only.
PrintOutputNotesPages - prints slides with notes.
PrintOutputOutline - outline only.
PrintOutputBuildSlides - build slides only (Office 2003 and 2007 only).
PrintOutputOneSlideHandouts - handouts with a single slide per page.
PrintOutputTwoSlideHandouts - handouts with two slides per page.
PrintOutputThreeSlideHandouts - handouts with three slides per page.
PrintOutputFourSlideHandouts - handouts with four slides per page.
PrintOutputSixSlideHandouts - handouts with six slides per page.
PrintOutputNineSlideHandouts - handouts with nine slides per page.

Name: Microsoft.PowerPoint.PrintOptions.PrintColorType

Prints the presentation in one of black and white, in pure black and white (also
referred to as high contrast), or in color.

Values: PrintColor
PrintBlackAndWhite
PrintPureBlackAndWhite

452

Document Conversion Service 3.0

Conversion Settings

PowerPoint Converter Options

Conversion Settings - PowerPoint Print Options

Name: Microsoft.PowerPoint.PrintOptions.PrintComments

If set to "True" then any comments will be printed along with the slides in the
presentation.

Values: String value "True" or "False".

Name: Microsoft.PowerPoint.PrintOptions.PrintFontsAsGraphics

If set to "True" then any text created with TrueType fonts will be printed as graphics.

Values: String value "True" or "False".

Name: Microsoft.PowerPoint.PrintOptions.PrintHiddenSlides

If set to "True" then any hidden slides in the presentation will also be printed.

Values: String value "True" or "False".

Name: Microsoft.PowerPoint.PrintOptions.SlideShowName

Sets the name of the custom slide show to print.

Values: A string value containing the name of the custom slide show in the presentation.

Conversion Settings - Document Protection

Name: Microsoft.PowerPoint.OpenPassword

The password is used to open a password-protected PowerPoint presentation. This
password is passed as clear text and is visible to anyone.

Values: A string value containing the password.

Document Conversion Service 3.0

453 Conversion Settings

Adobe Reader Options

Adobe Reader Options

These options control the behavior of the Adobe Reader converter used by Document Conversion
Service. Table values in bold text are the default value for that setting.

Sample Profile

<?xml version="1.0" encoding="utf-8"?>
<Profile Type="0"
 DisplayName="TIFF 300dpi Adobe with Markup"
 Description ="Prints Adobe files with any stamps and markup visible.">
 <Settings>

 <add Name ="Adobe.PDF.PrintOptions.CommentsAndForms"
 Value="DocumentsAndMarkups"/>

 <!-- Output file options -->
 <add Name="Devmode settings;Resolution" Value="300"/>
 <add Name="Save;Output File Format" Value="TIFF Multipaged"/>
 ...

 </Settings>
</Profile>

Code Sample - C#

PNDocConvQueueServiceLib.PNDocConvQueueItem item = null;

// Create the conversion item
item = new PNDocConvQueueServiceLib.PNDocConvQueueItem();

// Set conversion settings
item.Set("Adobe.PDF.PrintOptions.CommentsAndForms", "DocumentsAndMarkups");

item.Set("Devmode settings;Resolution", "300");
item.Set("Save;Output File Format", "TIFF Multipaged");
...
// convert the file
item.Convert("Adobe Acrobat Reader", _
 @"C:\Test\Report.pdf", _
 @"C:\Test\Out\ConvertedPDF");

Code Sample - VB.NET

Dim item As PNDocConvQueueServiceLib.IPNDocConvQueueItem

 ' Create the conversion item
item = New PNDocConvQueueServiceLib.PNDocConvQueueItem()

' Set conversion settings
item.Set("Adobe.PDF.PrintOptions.CommentsAndForms", "DocumentsAndMarkups")
item.Set("Devmode settings;Resolution", "300")
item.Set("Save;Output File Format", "TIFF Multipaged")
...
' convert the file
item.Convert("Adobe Acrobat Reader", _
 "C:\Test\Report.pdf", _
 "C:\Test\Out\ConvertedPDF")

454

Document Conversion Service 3.0

Conversion Settings

Adobe Reader Options

Conversion Settings - Adobe Reader Print Options

Name: Adobe.PDF.PrintOptions.CommentsAndForms

Choose what is visible on the page when the PDF file is printed. Markup consists of
any comments and annotations, including stamps, that have been placed on the
PDF.

Values: DocumentsAndMarkups - prints the document with any markup and stamps
visible.
DocumentsAndStamps - prints the document with only stamp annotations visible.
Markup is not shown
Documents - prints only the document. Markup and stamps are not printed.

Name: Adobe.PDF.PrintOptions.ChoosePaperSourceByPDFPageSize

When "True", Adobe will use the page size of each page in the PDF to determine
the paper size of the output page (paper source); in this case the page size of the
output images will match the original PDF document. If you are controlling the
paper size using the Devmode settings;Paper Size setting, this option should be set
to false. This will tell Adobe to scale the pages to the new paper size. This option is
enabled (set to "True") by default.

Values: String value "True" or "False".

Name: Adobe.PDF.PrintOptions.PageAutoRotate
When "True", the PDF page will be rotated to fit the output page orientation when
needed. Use when Adobe.PDF.PrintOptions.ChoosePaperSourceByPDFPageSize
is set to "False". This option is disabled (set to "False") by default.

Values: String value "True" or "False".

Name: Adobe.PDF.PrintOptions.PageScaling

Choose how the PDF page will be scaled to the output page. Use when
Adobe.PDF.PrintOptions.ChoosePaperSourceByPDFPageSize is set to "False".
This option is set to "ShrinkToFit" by default.

Note: This option applies only when using Adobe Reader with the Adobe Reader
converter; if using Adobe Acrobat, this option is not recognized.

Values: ActualSize - prints the PDF page at its original page size. If the output page is
smaller the the original PDF page size, the page may be cropped.
ShrinkToFit - PDF pages that are larger than the output page size will be scaled to
fit on the page; smaller pages are not scaled and are centered on the larger page.
This is the default value.

Document Conversion Service 3.0

455 Conversion Settings

Adobe Reader Options

Conversion Settings - Adobe Reader Print Options

Name: Adobe.PDF.PrintOptions.PrintAsImage

Choose how the PDF page will be printed. This option is enabled (set to "True") by
default as it produces the best quality output.

Values: String value "True" or "False".

Name: Adobe.PDF.PrintOptions.PrintCommentPopups

Set to true to also print comment popups when printing with
Adobe.PDF.PrintOptions.CommentsAndForms set to DocumentsAndMarkups. The
comments must be open to be printed, otherwise only the comment icon is printed.
Valid for Adobe Reader version 10 and higher.

Values: String value "True" or "False".

Name: Adobe.PDF.PrintOptions.AllowDuplexPrintJobs

Allows PDF files set with duplex printing options to successfully convert.

An empty blank page created by the Adobe printing engine will be added to the end
of any documents with an odd number of pages. Setting to "False" will cause the
file to fail to convert.

Values: String value "True" or "False".

Name: Adobe.PDF.PrintOptions.IgnoreDuplexPrintingOptions

Ignores any duplex (double-sided, FlipOnLongEdge, FlipOnShortEdge) printing
options set in the PDF file. The file is converted single-sided.
Overrides the Adobe.PDF.PrintOptions.AllowDuplexPrintJobs setting, if set.
Does not apply to password-protected PDF files.

Values: String value "True" or "False".

456

Document Conversion Service 3.0

Conversion Settings

Adobe Reader Options

Conversion Settings - Adobe Reader JavaScript Options

Name: Adobe.PDF.Javascript.Enable

Enable or disable any JavaScript in the PDF document. This option is disabled (set
to "False") by default as JavaScript in PDF files can be a security risk. If your PDF
files contain JavaScript that you need to have run to display the file properly, you
can enable JavaScript processing by setting this options to "True".

Values: String value "True" or "False".

Conversion Settings - Adobe Reader General Options

Name: Adobe.PDF.IgnoreSecurity

Available starting in DCS 3.0.016.

This setting ignores, if possible, any security and passwords set on the PDF file,
allowing the PDF file to be converted. PDF files with both user and owner
passwords will still fail to convert. This option is enabled (set to "True") by default.

Values: String value "True" or "False".

Name: Adobe.PDF.CreateTempCopyOnRetry

Available starting in DCS 3.0.016.

When True, this setting will attempt to copy this PDF to a new temporary PDF for
processing. For badly formed PDF files this can sometimes repair issues that
prevent the file from opening and/or converting. This option is enabled (set to
"True") by default.

Values: String value "True" or "False".

Document Conversion Service 3.0

457 Conversion Settings

Internet Explorer Options

Internet Explorer Options

These options control the behavior of the Internet Explorer converter used by Document Conversion
Service. Table values in bold text are the default value for that setting.

The default Internet Explorer options are to print no headers or footer information, use margins of 0.75", to
print all background color and images and to shrink the page to fit. See Adding Headers, Footers and
Fonts to HTML Conversion for instruction on customizing the Internet Explorer converter settings.

There are also application level Internet Explorer settings to control image scaling and browser emulation;
see Application Level Configuration Settings to change these options.

Sample Profile

<?xml version="1.0" encoding="utf-8"?>
<Profile Type="0"
 DisplayName="Internet Explorer TIFF 300dpi"
 Description ="Created TIFF from IE with footer only.">
 <Settings>

 <!-- Add footer with URL in center -->
 <add Name="Microsoft.InternetExplorer.PageSetup.Footer"
 Value="&b&u&b"/>

 <!-- Add 0.50 inch margins -->
 <add Name="Microsoft.InternetExplorer.PageSetup.MarginBottom"
 Value="0.50"/>
 <add Name="Microsoft.InternetExplorer.PageSetup.MarginLeft"
 Value="0.50"/>
 <add Name="Microsoft.InternetExplorer.PageSetup.MarginRight"
 Value="0.50"/>
 <add Name="Microsoft.InternetExplorer.PageSetup.MarginTop"
 Value="0.50"/>

 <!-- Output file options -->
 <add Name="Devmode settings;Resolution" Value="300"/>
 <add Name="Save;Output File Format" Value="TIFF Multipaged"/>
 ...

 </Settings>
</Profile>

458

Document Conversion Service 3.0

Conversion Settings

Internet Explorer Options

Code Sample - C#

PNDocConvQueueServiceLib.PNDocConvQueueItem item = null;

// Create the conversion item
item = new PNDocConvQueueServiceLib.PNDocConvQueueItem();

// Set conversion settings
item.Set("Microsoft.InternetExplorer.PageSetup.Footer",
 "&b&u&b");
item.Set("Microsoft.InternetExplorer.PageSetup.MarginBottom", "0.50");
item.Set("Microsoft.InternetExplorer.PageSetup.MarginLeft", "0.50");
item.Set("Microsoft.InternetExplorer.PageSetup.MarginRight", "0.50");
item.Set("Microsoft.InternetExplorer.PageSetup.MarginTop", "0.50");
...
// convert the file
item.Convert("Internet Explorer",
 @"C:\Test\ArchiveReport.mht",
 @"C:\Test\Out\ConvertedReport");

Code Sample - VB.NET

Dim item As PNDocConvQueueServiceLib.IPNDocConvQueueItem

 ' Create the conversion item
item = New PNDocConvQueueServiceLib.PNDocConvQueueItem()

' Set conversion settings
item.Set("Microsoft.InternetExplorer.PageSetup.Footer","&b&u&b")
item.Set("Microsoft.InternetExplorer.PageSetup.MarginBottom", "0.50")
item.Set("Microsoft.InternetExplorer.PageSetup.MarginLeft", "0.50")
item.Set("Microsoft.InternetExplorer.PageSetup.MarginRight", "0.50")
item.Set("Microsoft.InternetExplorer.PageSetup.MarginTop", "0.50")

...
' convert the file
item.Convert("Internet Explorer", _
 "C:\Test\ArchiveReport.mht", _
 "C:\Test\Out\ConvertedReport")

Conversion Settings - Page Setup

Name: Microsoft.InternetExplorer.PageSetup.Header

The format of the header to print on each page. By default, no page header is
printed.

Values: If you do want a header when converting HTML files, follow the instructions here.

Document Conversion Service 3.0

459 Conversion Settings

Internet Explorer Options

Conversion Settings - Page Setup

Name: Microsoft.InternetExplorer.PageSetup.Footer

The format of the footer to print on each page. By default, no page footer is
printed.

Values: If you do want a footer when converting HTML files, follow the instructions here.

Name: Microsoft.InternetExplorer.PageSetup.Font

The font to use if printing headers and footers. The font is specified as follows, with
text in bold specifying the font name, its point size and the color. The last two
options, font-style: italic; and font-weight: bold are optional and are only to be
included if bold, italic, or bold and italic text is wanted.

Values: String value containing the font definition.

font-family: <name>; font-size: <size>pt; color: rgb(0,0,0); font-style: italic; font-
weight: bold;

Name: Microsoft.InternetExplorer.PageSetup.MarginBottom

The bottom margin in inches. The default is 0.75.

Values: String value of the desired margin height.

Name: Microsoft.InternetExplorer.PageSetup.MarginLeft

The left-hand side margin in inches. The default is 0.75.

Values: String value of the desired margin width.

Name: Microsoft.InternetExplorer.PageSetup.MarginRight

The right-hand side margin in inches. The default is 0.75.

Values: String value of the desired margin width.

Name: Microsoft.InternetExplorer.PageSetup.MarginTop

The top margin in inches. The default is 0.75.

Values: String value of the desired margin height.

460

Document Conversion Service 3.0

Conversion Settings

Internet Explorer Options

Conversion Settings - Page Setup

Name: Microsoft.InternetExplorer.PageSetup.PrintBackground

Determines if background colors and images are printed. By default, they are
always printed.

Values: String value "True" or "False".

Name: Microsoft.InternetExplorer.PageSetup.ShrinkToFit

Determines if the page is scaled to fit on the the printed page. By default it is
always printed with Shrink-to-Fit enabled.

By default, the minimum scale factor is 30, meaning the page will shrink to at most
30% of its original size to try and fit the contents on the page. If you need the page
to be larger, this scaling factor can be customized in the Internet Explorer section in
the ApplicationFactory section of the Document Conversion Service application
configuration file. See also Application Level Configuration Settings.

<AppFactory Name="Internet Explorer"
 Type="PEERNET.PNDocConv.Applications.PNInternetExplorerApplicationFactory"
 Assembly="PNInternetExplorerApplicationFactory">
 <Settings>
 ...
 <add Name="ConverterPlugIn.PNIExplorer.ShrinkToFitScaleMin" Value="30" />
 </Settings>
</AppFactory>

Values: String value "True" or "False".

Document Conversion Service 3.0

461 Conversion Settings

Internet Explorer Options

Adding Headers, Footers and Fonts to HTML Conversion

The simplest method to add header and footer information and font information is to use the Page Setup
dialog in Internet Explorer to configure the margins, headers, footers and other page setup options and
then copy these settings from the registry keys Internet Explorer uses to store this information.

1. Open Internet Explorer to any web page or html file.

2. In the upper right corner, click the Tools icon (it looks like a blue gear), then select Print -
Page Setup.

a. Alternatively you can press the F10 key to show the application menu and then select
File - Page Setup.

3. In the Page Setup dialog, define your margins, any header and footer information, and optionally
choose the font you want to use. Click OK, then exit Internet Explorer.

4. Open the registry using RegEdit (type regedit.exe into the Start menu search field or from the
Start menu go to Programs - Accessories - Run and type regedit.exe).

5. In the registry editor, go to the HKEY_CURRENT_USER folder, then Software - Microsoft
- Internet Explorer - PageSetup.

462

Document Conversion Service 3.0

Conversion Settings

Internet Explorer Options

6. In the right-hand pane, double click any of the values to open the Edit String dialog box. From
here you can copy and paste the header and footer formatted strings. When using these strings
in the conversion profiles, any & characters need to be replaced with & for the string to
be parsed correctly.

Document Conversion Service 3.0

463 Conversion Settings

Internet Explorer Options

Application Level Configuration Settings

 Document Conversion Service uses Internet Explorer to convert HTM, HTML and MHT files. When
dealing with MHT and HTML files with large images, and older style HTML files formatted for earlier
browser versions the options for image scaling and browser emulation may need to be configured to
produce the desired output file.

These options are set in the Internet Explorer section of the application configuration file. Changing these
options will require a restart of Document Conversion Service for the new settings to take effect.

Setting the Minimum Scale For Internet Explorer

HTML files and MHT files such as email messages from Outlook can sometimes have very wide
images. By default, these files are always printed with Shrink-to-Fit enabled and a minimum scale
factor of 30. This means that the page will shrink to at most 30% of its original size to fit the image
contents on the page.

If you need the images to be scaled larger, the setting
ConverterPlugIn.PNIExplorer.ShrinkToFitScaleMin can be adjusted from between 30 to 100 to get the
size of image you want.

This option is set at the application level and cannot be changed per file. Changes to this setting
require a restart of Document Conversion Service to take effect.

Setting the Browser Emulation for Internet Explorer

In certain cases, older HTML files created for previous versions of Internet Explorer will not convert
correctly when printed using the latest version of Internet Explorer. This is because Internet Explorer
runs with Edge compatibility by default and it is this new compatibility and rendering that has a
problem with the older style HTML.

If you have these type of files, the setting ConverterPlugIn.PNIExplorer.BrowserEmulation can be
used to force Internet Explorer to emulate older versions of the browser so that the files are rendered
properly based on the older browsers rendering engine.

This option is set at the application level and cannot be changed per file. Changes to this setting
require a restart of Document Conversion Service to take effect.

464

Document Conversion Service 3.0

Conversion Settings

Internet Explorer Options

 Configuration Section for Internet Explorer

<AppFactories>
 <Factories>

 <AppFactory Name="Internet Explorer"
 Type="PEERNET.PNDocConv.Applications.PNInternetExplorerApplicationFactory"
 Assembly="PNInternetExplorerApplicationFactory">
 <Settings>
 <add Name="Enabled" Value="auto"/>
 <add Name="MaxInstances" Value="auto"/>
 <add Name="RecycleThreshold" Value="0"/>
 <add Name="DocumentOpenTimeout" Value="360000"/>

 <!-- Value range 30 - 100 -->
 <add Name="ConverterPlugIn.PNIExplorer.ShrinkToFitScaleMin" Value="30"/>

 <!-- Values: Empty string, IE7, IE8, IE8FORCE, IE9, IE9FORCE, IE10, IE10FORCE, IE11, IE11FORCE -->
 <add Name="ConverterPlugIn.PNIExplorer.BrowserEmulation" Value="" />

 </Settings>
 </AppFactory>
 ...

 </Factories>
 <Settings>
 <!-- Global factory settings -->
 <add Name="MaxInstances" Value="auto"/>
 <add Name="RecycleThreshold" Value="0"/>
 </Settings>
</AppFactories>

Document Conversion Service 3.0

465 Conversion Settings

Ghostscript Converter Options

Ghostscript Converter Options

These options control the behavior of the Ghostscript converter used by Document Conversion Service.
Table values in bold text are the default value for that setting.

Sample Profile

<?xml version="1.0" encoding="utf-8"?>
<Profile Type="0"
 DisplayName="Ghostscript Custom Font TIFF 300dpi"
 Description ="Created TIFF from Ghostscript using custom fonts.">
 <Settings>

 <!-- Antialias options -->
 <add Name="ConverterPlugIn.PNGhostscriptConverter.TextAntiAlias" Value="4"/>
 <add Name="ConverterPlugIn.PNGhostscriptConverter.GraphicsAntiAlias" Value="4"/>

 <!-- Search these folders for matching fonts -->
 <add Name="ConverterPlugIn.PNGhostscriptConverter.FontPath"
 Value="C:\psfonts;c:\Windows\Fonts;C:\MyFonts"/>

 <!-- Output file options -->
 <add Name="Devmode settings;Resolution" Value="300"/>
 <add Name="Save;Output File Format" Value="TIFF Multipaged"/>
 ...

 </Settings>
</Profile>

Code Sample - C#

PNDocConvQueueServiceLib.PNDocConvQueueItem item = null;

// Create the conversion item
item = new PNDocConvQueueServiceLib.PNDocConvQueueItem();

// Set conversion settings
item.Set("ConverterPlugIn.PNGhostscriptConverter.TextAntiAlias","4");
item.Set("ConverterPlugIn.PNGhostscriptConverter.Graphics","4");

item.Set("ConverterPlugIn.PNGhostscriptConverter.FontPath",
 @"C:\psfonts;c:\Windows\Fonts;C:\MyFonts");
...
// convert the file
item.Convert("Ghostscript",
 @"C:\Test\ArchiveReport.ps",
 @"C:\Test\Out\ConvertedReport");

466

Document Conversion Service 3.0

Conversion Settings

Ghostscript Converter Options

Code Sample - VB.NET

Dim item As PNDocConvQueueServiceLib.IPNDocConvQueueItem

 ' Create the conversion item
item = New PNDocConvQueueServiceLib.PNDocConvQueueItem()

' Set conversion settings
item.Set("ConverterPlugIn.PNGhostscriptConverter.TextAntiAlias","4")
item.Set("ConverterPlugIn.PNGhostscriptConverter.Graphics","4")

item.Set("ConverterPlugIn.PNGhostscriptConverter.FontPath", _
 "C:\psfonts;c:\Windows\Fonts;C:\MyFonts")

...
' convert the file
item.Convert("Ghostscript", _
 "C:\Test\ArchiveReport.ps", _
 "C:\Test\Out\ConvertedReport")

Conversion Settings - Page Setup

Name: ConverterPlugIn.PNGhostscriptConverter.TextAntiAlias

The size of the subsample box used when antialiasing text in the file. Antialiasing is
used to improve the quality of the text on the page when converted to an image. A
subsample box of 4 will produce the best result. The lower subsample values will
increase the speed of conversion but can affect the image quality.

Values: The size of the subsample box can be 4, 2 or 1. The default is 4.

Name: ConverterPlugIn.PNGhostscriptConverter.GraphicsAntiAlias

The size of the subsample box used when antialiasing graphics in the file.
Antialiasing is used to improve the quality of any graphics on the page when
converted to an image of a different resolution. A subsample box of 4 will produce
the best result. The lower subsample values will increase the speed of conversion
but can affect the image quality.

Values: The size of the subsample box can be 4, 2 or 1. The default is 4.

Name: ConverterPlugIn.PNGhostscriptConverter.FontPath

By default, the special Windows Fonts folder and the folder c:\psfonts are used by
Ghostscript to find the fonts used in the Postscript or PDF documents. You can
override this setting by providing your own semicolon-separated list of folders in
which to search.

Values: String value containing a semi-colon separated list of folders.

Document Conversion Service 3.0

467 Conversion Settings

Image Converter Options

Image Converter Options

These options control the behavior of the image converter used by Document Conversion Service. Table
values in bold text are the default value for that setting.

Sample Profile

<?xml version="1.0" encoding="utf-8"?>
<Profile Type="0"
 DisplayName="Image Converter 300dpi"
 Description ="Create images using the PEERNET image converter.">
 <Settings>

 <!-- Image Conversion options, use LEAD first -->
 <add Name="ConverterPlugIn.PNImageConverter.ImageToolkitOrder" Value="LEAD;WIC"/>
 <add Name="ConverterPlugIn.PNImageConverter.LEADScalingMode" Value="BICUBIC"/>
 <add Name="ConverterPlugIn.PNImageConverter.WICScalingMode" Value="BICUBIC"/>

 <!-- Background color for transparent images, white is default -->
 <add Name="ConverterPlugIn.PNImageConverter.AlphaBackgroundColorRGB" Value="255,255,255"/>

 <!-- Output file options -->
 <add Name="Devmode settings;Resolution" Value="300"/>
 <add Name="Save;Output File Format" Value="TIFF Multipaged"/>
 ...

 </Settings>
</Profile>

Code Sample - C#

PNDocConvQueueServiceLib.PNDocConvQueueItem item = null;

// Create the conversion item
item = new PNDocConvQueueServiceLib.PNDocConvQueueItem();

// Set conversion settings
item.Set("ConverterPlugIn.PNImageConverter.ImageToolkitOrder","LEAD;WIC");
item.Set("ConverterPlugIn.PNImageConverter.LEADScalingMode","BICUBIC");
item.Set("ConverterPlugIn.PNImageConverter.WICScalingMode","BICUBIC");

// Background color for transparent images, white is default
item.Set("ConverterPlugIn.PNImageConverter.AlphaBackgroundColorRGB","255,255,255");

// Output file options
item.Set("Devmode settings;Resolution","300");
item.Set("Save;Output File Format","TIFF Multipaged");

...
// convert the file
item.Convert("PEERNET Image Converted",
 @"C:\Test\screenshot.png",
 @"C:\Test\Out\ConvertedImage");

468

Document Conversion Service 3.0

Conversion Settings

Image Converter Options

Code Sample - VB.NET

Dim item As PNDocConvQueueServiceLib.IPNDocConvQueueItem

 ' Create the conversion item
item = New PNDocConvQueueServiceLib.PNDocConvQueueItem()

' Set conversion settings
item.Set("ConverterPlugIn.PNImageConverter.ImageToolkitOrder","LEAD;WIC")
item.Set("ConverterPlugIn.PNImageConverter.LEADScalingMode","BICUBIC")
item.Set("ConverterPlugIn.PNImageConverter.WICScalingMode","BICUBIC")

' Background color for transparent images, white is default
item.Set("ConverterPlugIn.PNImageConverter.AlphaBackgroundColorRGB","255,255,255")

item.Set("Devmode settings;Resolution","300")
item.Set("Save;Output File Format","TIFF Multipaged")

...
' convert the file
item.Convert("PEERNET Image Converted", _
 "C:\Test\screenshot.png", _
 "C:\Test\Out\ConvertedImage")

Conversion Settings - Toolkits and Scaling Modes

Name: ConverterPlugIn.PNImageConverter.ImageToolkitOrder

This string lists, in the order in which they will be used, the image tool kits that
PEERNET Image Converter will use to try and convert an image. The default value,
"LEAD;WIC", will use LEAD first and then try WIC (Windows Imaging Component)
if the image could not be converted. The two tool kits support opening and reading
different file formats; see Supported Image File Formats below for a complete list.
You do not need to install anything extra to use these either of these tool kits. The
LEAD tool kit is bundled with Document Conversion Service and the Windows
Image Component is part of the Windows operating system.

Values: LEAD;WIC - use LEAD first, then try WIC if the image could not be converted.
WIC;LEAD - use WIC first, then try LEAD if the image could not be converted.
LEAD - only use LEAD.
WIC - only use WIC.

Document Conversion Service 3.0

469 Conversion Settings

Image Converter Options

Conversion Settings - Toolkits and Scaling Modes

Name: ConverterPlugIn.PNImageConverter.LEADScalingMode

This is the sampling or filtering mode to use when scaling an image. An image
needs to be scaled when the resolution of the source image and destination image
are not the same.

Values: NORMAL - Nearest neighbor, this is the fasted mode and often can produce the
smallest image.
LINEAR - A linear interpolation algorithm, slower than NORMAL but better image
quality.
BICUBIC - Bicubic interpolation resizing, slower than LINEAR, but better image
quality.

Name: ConverterPlugIn.PNImageConverter.WICScalingMode

This is the sampling or filtering mode to use when scaling an image. An image
needs to be scaled when the resolution of the source image and destination image
are not the same.

Values: NORMAL - Uses nearest neighbor scaling. This is nearest neighbor scaling, which
is the fastest mode and often can produce the smallest image. The tradeoff is a
lower image quality.
LINEAR - A bilinear interpolation algorithm where the weighted average of a 2x2
grid is used to compute the pixel values of the new image. Better quality than
NORMAL.
BICUBIC - The new pixel values are computed using a weighted average of a 4x4
grid.
FANT - This scaling mode produces the best quality images but is slower and more
CPU intensive than the others.

Name: ConverterPlugIn.PNImageConverter.KeepSourceImageResolution

Optionally keep the output image's resolution the same as source image. Note that
fax mode and other image option actions (Image Options) will still override the end
result. Overrides the Devmode settings;Resolution settings from Devmode settings.

Values: True - Create the new image with the same resolution as the original image.
False - Creates the new image with the resolution specified in the Devmode
settings;Resolution setting.

470

Document Conversion Service 3.0

Conversion Settings

Image Converter Options

Conversion Settings - Toolkits and Scaling Modes

Name: ConverterPlugIn.PNImageConverter.ResampleImageToMaxWidthOrHeightInP
ixels

Dynamically sample the output image to a specific maximum width or height, which
ever criteria is met first. The desired dimension is specified in pixels. Note that fax
mode and other image option actions (Image Options) will still override the end
result.

Values: The desired maximum width or height in pixels.

Name: ConverterPlugIn.PNImageConverter.AlphaBackgroundColorRGB

For images that support transparency, or alphablending, optionally set the desired
background color when converting the image. The default background color is
White.

Values: The desired background color set as RGB triplet separated by commas.

255,255,255 - White
0,0,0 - Black

Supported Image File Formats

The table below lists the image formats supported by each tool kit.

Image Format LEAD WIC

CServe Portable Network Graphics images (*.png) • •

Graphics Interchange Format image files (*.gif) • •

Icon Format (*.ico) •

JPEG images (*.jpg) • •

TIFF images (*.tif) • •

Windows Bitmap images (*.bmp) • •

Windows Media Photo (*.wdp, *.hdp, *.jxr) •

ZSoft PCX images (*.pcx) •

ZSoft DCX images (*.dcx) •

Document Conversion Service 3.0

471 Conversion Settings

OutsideIn AX Options

OutsideIn AX Options

These options control the behavior of the OutsideIn AX converter used by Document Conversion Service.
Table values in bold text are the default value for that setting.

Sample Profile

<?xml version="1.0" encoding="utf-8"?>
<Profile Type="0"
 DisplayName="TIFF 300dpi OutsideIn AX"
 Description ="OutsideIn AX with borders and margins">
 <Settings>
 <add Name ="Oracle.OutsideInAX.BMPPrintBorder" Value="0"/>
 <add Name ="Oracle.OutsideInAX.IntlFlags" Value="1"/>
 <add Name ="Oracle.OutsideInAX.PrintMarginTop" Value="0.50"/>
 <add Name ="Oracle.OutsideInAX.PrintMarginBottom" Value="0.50"/>

 <!-- Output file options -->
 <add Name="Devmode settings;Resolution" Value="300"/>
 <add Name="Save;Output File Format" Value="TIFF Multipaged"/>
 ...

 </Settings>
</Profile>

Code Sample - C#

PNDocConvQueueServiceLib.PNDocConvQueueItem item = null;

// Create the conversion item
item = new PNDocConvQueueServiceLib.PNDocConvQueueItem();

// Set conversion settings
item.Set("Oracle.OutsideInAX.BMPPrintBorder", "0");
item.Set("Oracle.OutsideInAX.IntlFlags", "1");
item.Set("Oracle.OutsideInAX.PrintMarginTop", "0.50");
item.Set("Oracle.OutsideInAX.PrintMarginBottom", "0.50");

item.Set("Devmode settings;Resolution", "300");
item.Set("Save;Output File Format", "TIFF Multipaged");
...
// convert the file
item.Convert("Microsoft Outside-In AX",
 "C:\Test\Report.wpd",
 "C:\Test\Out\ConvertedReport");

472

Document Conversion Service 3.0

Conversion Settings

OutsideIn AX Options

Code Sample - VB.NET

Dim item As PNDocConvQueueServiceLib.IPNDocConvQueueItem

 ' Create the conversion item
item = New PNDocConvQueueServiceLib.PNDocConvQueueItem()

' Set conversion settings
item.Set("Oracle.OutsideInAX.BMPPrintBorder", "0")
item.Set("Oracle.OutsideInAX.IntlFlags", "1")
item.Set("Oracle.OutsideInAX.PrintMarginTop", "0.50")
item.Set("Oracle.OutsideInAX.PrintMarginBottom", "0.50")

item.Set("Devmode settings;Resolution", "300")
item.Set("Save;Output File Format", "TIFF Multipaged")
...
' convert the file
item.Convert("Microsoft Word", _
 "C:\Test\Report.wpd", _
 "C:\Test\Out\ConvertedReport")

Conversion Settings - OutsideIn AX Printing

Name: Oracle.OutsideInAX.BMPPrintBorder

Print a one pixel wide border around the image.

Values: 0 - do not print the border
1 - print the border

Name: Oracle.OutsideInAX.VECPrintBorder

Print a one pixel wide border around the image.

Values: 0 - do not print the border
1 - print the border

Name: Oracle.OutsideInAX.IntlFlags

Specifies what unit of measurement is used for the print margins below. Units are
either inches or metric units.

Values: 0 - Metric
1 - Imperial (Inches)

Name: Oracle.OutsideInAX.PrintMarginTop

The top print margin height.

Values: A string value representing the printer margin as a floating point number, such as
0.50 for half an inch.

Document Conversion Service 3.0

473 Conversion Settings

OutsideIn AX Options

Conversion Settings - OutsideIn AX Printing

Name: Oracle.OutsideInAX.PrintMarginBottom

The bottom print margin height.

Values: A string value representing the printer margin as a floating point number, such as
0.50 for half an inch.

Name: Oracle.OutsideInAX.PrintMarginLeft

The left print margin width.

Values: A string value representing the printer margin as a floating point number, such as
0.50 for half an inch.

Name: Oracle.OutsideInAX.PrintMarginRight

The right print margin width.

Values: A string value representing the printer margin as a floating point number, such as
0.50 for half an inch.

474

Document Conversion Service 3.0

Conversion Settings

Save

Save

These options control the orientation, resolution, color mode and paper size of the output file. You can also
choose to split multipage files based on the number of pages per file or a file size threshold. Table values
in bold text are the default value for that setting.

Sample Profile

<?xml version="1.0" encoding="utf-8"?>
<Profile Type="0"
 DisplayName="TIFF 300dpi Serialized with Overwrite"
 Description ="Create TIFF serialized, overwrite existing files.">
 <Settings>

 <!-- Output file options -->
 <add Name="Devmode settings;Resolution" Value="300"/>
 <add Name ="Save;Output File Format" Value="TIFF Serialized"/>
 <add Name ="Save;Prompt" Value="0"/>
 <add Name ="Save;Overwrite" Value="1"/>
 <add Name ="Save;Color reduction" Value="BW"/>
 ...

 </Settings>
</Profile>

Code Sample - C#

PNDocConvQueueServiceLib.PNDocConvQueueItem item = null;

// Create the conversion item
item = new PNDocConvQueueServiceLib.PNDocConvQueueItem();

// Set conversion settings
item.Set("Devmode settings;Resolution", "300");
item.Set("Save;Output File Format", "TIFF Serialized");
item.Set("Save;Color reduction", "BW");
item.Set("Save;
...
// convert the file
item.Convert("Microsoft Word",
 @"C:\Test\Report.docx",
 @"C:\Test\Out\ConvertedReport");

Document Conversion Service 3.0

475 Conversion Settings

Save

Code Sample - VB.NET

Dim item As PNDocConvQueueServiceLib.IPNDocConvQueueItem

 ' Create the conversion item
item = New PNDocConvQueueServiceLib.PNDocConvQueueItem()

' Set conversion settings
item.Set("Devmode settings;Resolution", "300")
item.Set("Save;Output File Format", "TIFF Serialized")
item.Set("Save;Prompt", "0")
item.Set("Save;Overwrite", "1")
item.Set("Save;Color reduction", "BW")
...
' convert the file
item.Convert("Microsoft Word", _
 "C:\Test\Report.docx", _
 "C:\Test\Out\ConvertedReport")

Conversion Settings - Save

Name: Save;Use JobID

Use the driver JobID when creating the file name. The driver stores an internal
number that is automatically incremented for each print job.

Values: 0 - Do not include JobID in file name.
1 - Include JobID in file name.

Name: Save;Append

Append the new images to an existing file name or sequence.

Values: 0 - Do not append, output is a new file.
1 - Output is appended to existing file or sequence.

Name: Save;Output directory

Values: The output directory path in which to save the image.

Name: Save;Output filename

Values: Base file name excluding path and extension to use to name the file. Default is the
document name submitted to print job.

476

Document Conversion Service 3.0

Conversion Settings

Save

Conversion Settings - Save

Name: Save;Output File Format

The type of file to create.

Values: JPEG - JPEG (*.jpg)
TIFF Multipaged - TIFF Multipaged (*.tif)
TIFF Serialized - TIFF Serialized (*.tif)
Adobe PDF Multipaged - Adobe PDF Multipaged (*.pdf)
Adobe PDF Serialized -Adobe PDF Serialized (*.pdf)
CompuServe GIF - CompuServe GIF (*.gif)
CompuServe PNG - CompuServe PNG (*.png)
Windows BMP - Windows BMP (*.bmp)
TARGA - Targa (*.tga)
Adobe Photoshop 3.0 - Adobe Photoshop 3.0 (*.psd)
ZSoft PCX - ZSoft PCX (*.pcx)
ZSoft DCX - ZSoft DCX (*.dcx)

Name: Save;remove file extension

Removes the filename extension from the original filename before creating the new
filename. If set to 0, a file Document.doc created as TIFF would become
Document.doc.tif; when set to remove the extension, the resulting filename would
be Document.tif.

Values: 0 - Leave original filename extension in new filename
1 - Remove original filename extension before creating new filename.

Name: Save;Color reduction

Use the color reduction options below to reduce the number of colors in the output
files.

Values: none - No color reduction
Optimal - Reduce to lowest color count needed per page
BW - Reduce to black and white using selected dithering method
grey - Reduce to greyscale
256Colors - Create all pages as 8-bit color (256 colors)
16Colors - Create all pages as 4-bit color (16 colors)
optimalMax256Colors - Reduces to lowest color count needed for each page, any
pages over 256 colors are reduced to 256 colors.
optimalMax16Colors - Reduces to lowest color count needed for each page, any
pages over 16 colors are reduced to 16 colors.

Document Conversion Service 3.0

477 Conversion Settings

Save

Conversion Settings - Save

Name: Save;Dithering method

Dithering enhances the appearance of color images that have been reduced to
black and white.

Values: None - No dithering
Floyd - Floyd-Steinberg dithering
Burkes - Burkes dithering
Bayer - Bayer dithering
Halftone - Halftone dithering

Name: Save;SplitFileEveryNPagesEnabled

Enables file splitting based on the page count set by SplitFileEveryNPages. When
file splitting is enabled, the serialized naming profile is always used to name each
file in the sequence. Can be combined with
SplitFileWhenFileSizeExceedsThresholdEnabled to split by page count and file
size.

File splitting only applies to the following multipaged file formats:
· TIFF Multipaged - TIFF Multipaged (*.tif)
· Adobe PDF Multipaged - Adobe PDF Multipaged (*.pdf)
· ZSoft DCX - ZSoft DCX (*.dcx)

Values: 0 - Do not split the file, create a single multipaged file.
1 - Split the file when the page count reaches limit set by SplitFileEveryNPages.

Name: Save;SplitFileEveryNPages

The page count at which to start creating a new file.

Values: 0-4294967295, default is 1000.

478

Document Conversion Service 3.0

Conversion Settings

Save

Conversion Settings - Save

Name: Save;SplitFileWhenFileSizeExceedsThresholdEnabled

Enables file splitting based on a file size threshold set by
SplitFileSizeThresholdInBytes. The file is split when the file size gets larger than
the threshold. When file splitting is enabled, the serialized naming profile is always
used to name each file in the sequence. Can be combined with
SplitFileEveryNPagesEnabled to split by file size and page count.

File splitting only applies to the following multipaged file formats:
· TIFF Multipaged - TIFF Multipaged (*.tif)
· Adobe PDF Multipaged - Adobe PDF Multipaged (*.pdf)
· ZSoft DCX - ZSoft DCX (*.dcx)

Values: 0 - Do not split the file, create a single multipaged file.
1 - Split the file when the file size exceeds the limit set by
SplitFileSizeThresholdInBytes.

Name: Save;SplitFileSizeThresholdInBytes

The file size, in bytes, at which to start creating a new file.

Values: 0-18446744073709551615, default is 1073741824, or 1GB.

Document Conversion Service 3.0

479 Conversion Settings

Devmode settings

Devmode settings

These options control the orientation, resolution, color mode and paper size of the output file. Table values
in bold text are the default value for that setting.

Sample Profile

<?xml version="1.0" encoding="utf-8"?>
<Profile Type="0"
 DisplayName="TIFF 300dpi Color "
 Description ="Create color TIFF">
 <Settings>

 <!-- Output file options -->
 <add Name="Devmode settings;Resolution" Value="300"/>
 <add Name="Devmode settings;Color" Value="1"/>
 <add Name="Save;Output File Format" Value="TIFF Multipaged"/>
 ...

 </Settings>
</Profile>

Code Sample - C#

PNDocConvQueueServiceLib.PNDocConvQueueItem item = null;

// Create the conversion item
item = new PNDocConvQueueServiceLib.PNDocConvQueueItem();

// Set conversion settings
item.Set("Devmode settings;Resolution", "300");
item.Set("Devmode settings;Color", "1");
item.Set("Save;Output File Format", "TIFF Multipaged");
...
// convert the file
item.Convert("Microsoft Word",
 @"C:\Test\Report.docx",
 @"C:\Test\Out\ConvertedReport");

Code Sample - VB.NET

Dim item As PNDocConvQueueServiceLib.IPNDocConvQueueItem

 ' Create the conversion item
item = New PNDocConvQueueServiceLib.PNDocConvQueueItem()

' Set conversion settings
item.Set("Devmode settings;Resolution", "300")
item.Set("Devmode settings;Color", "1")
item.Set("Save;Output File Format", "TIFF Multipaged")
...
' convert the file
item.Convert("Microsoft Word", _
 "C:\Test\Report.docx", _
 "C:\Test\Out\ConvertedReport")

480

Document Conversion Service 3.0

Conversion Settings

Devmode settings

Conversion Settings - Devmode

Name: Devmode settings;Orientation

Orientation of the page when the file is converted.

Values: Portrait
Landscape

Name: Devmode settings;Resolution

Number of dots per inch.

Values: 1200, 720, 600, 400, 360, 300, 254, 240, 200, 150, 120, 100, 75, 60, 50

Name: Devmode settings;Color

Print files in color or black and white

Values: 1
 Color mode
0
 Black and white, or monochrome mode.

Name: Devmode settings;Paper Size

Standard paper sizes available. Other custom paper sizes you may have added are
also available by name.

Values: Letter
Letter Small
Tabloid
Legal
Statement
Executive
A3
A4
A4 Small
A5
B4
B5
Folio
Quarto
10x14
11x17
Note
Envelope #9
Envelope #10
Envelope #11
Envelope #12
Envelope #14

Document Conversion Service 3.0

481 Conversion Settings

Devmode settings

Conversion Settings - Devmode

Name: Devmode settings;Paper Size

Standard paper sizes available. Other custom paper sizes you may have added are
also available by name.

C Size Sheet
D Size Sheet
E Size Sheet
F Size Sheet
Envelope DL
Envelope C5
Envelope C3
Envelope C4
Envelope C6
Envelope C65
Envelope B4
Envelope B5
Envelope B6
Envelope Italy
Envelope Monarch
Envelope Personal
US Std Fanfold
German Std Fanfold
German Legal Fanfold
ISO B4
Japanese Postcard
9x11
10x11
15x11
Envelope Invite
Letter Extra
Legal Extra
Tabloid Extra
A4 Extra
Letter Transverse
A4 Transverse
Letter Extra Transverse
A Plus
B Plus
Letter Plus
A4 Plus
A5 Transverse
B5 Transverse
A3 Extra
A5 Extra
B5 Extra
A3 Transverse
A3 Extra Transverse
A1 594 x 841 mm
A0 841 x 1189 mm
B3 (ISO) 353 x 500 mm
B2 (ISO) 500 x 707 mm

482

Document Conversion Service 3.0

Conversion Settings

Devmode settings

Conversion Settings - Devmode

Name: Devmode settings;Paper Size

Standard paper sizes available. Other custom paper sizes you may have added are
also available by name.

B1 (ISO) 707 x 1000 mm
B3 (JIS) 364 x 515 mm
B2 (JIS) 515 x 728 mm
B1 (JIS) 728 x 1030 mm
B0 (JIS) 1030 x 1456 mm

Document Conversion Service 3.0

483 Conversion Settings

Advanced File Naming

Advanced File Naming

There are four different naming profiles that control how the output file is named. Which naming profile is
used depends on if you are creating serialized or multipaged output, and if you have the Save;UseJobID
setting set to true. It is the combination of these settings that determines which profile is used to build the
output filename.

The only exception to this is when file splitting by page count (Save;SplitFileEveryNPagesEnabled) or file
size (Save;SplitFileWhenFileSizeExceedsThresholdEnabled) is enabled. When file splitting is enabled, the
serialized naming profile is always used to name each file in the sequence. The file splitting options are
only used when creating multipaged file types.

Serialized or
Multi-page

Inclu
de
JobI
D

Naming Profile

Serialized No Serialized

Yes Serialized w/ JobID

Multi-paged No Multi-page

Yes Multi-page w/ JobID

In most scenarios you will never need to change these values. Care must be taken when you do. The
table below lists the settings to use to customize the output file naming. Table values in bold text are the
default value for that setting.

Sample Profile

<?xml version="1.0" encoding="utf-8"?>
<Profile Type="0"
 DisplayName="Color TIFF 300dpi Named by Page Number"
 Description ="Create color TIFF named by page number">
 <Settings>

 <!-- Output file options -->
 <add Name="Devmode settings;Resolution" Value="300"/>
 <add Name="Devmode settings;Color" Value="1"/>
 <add Name="Save;Output File Format" Value="TIFF Serialized"/>
 <add Name="Advanced File Naming;Format string S" Value="%s"/>
 <add Name="Advanced File Naming;Variables S"
 Value="$(PrintedPageNumber)"/>
 ...

 </Settings>
</Profile>

484

Document Conversion Service 3.0

Conversion Settings

Advanced File Naming

Code Sample - C#

PNDocConvQueueServiceLib.PNDocConvQueueItem item = null;

// Create the conversion item
item = new PNDocConvQueueServiceLib.PNDocConvQueueItem();

// Set conversion settings
item.Set("Devmode settings;Resolution", "300");
item.Set("Devmode settings;Color", "1");
item.Set("Save;Output File Format", "TIFF Serialized");

item.Set("Advanced File Naming;Format string S", "%s");
item.Set("Advanced File Naming;Variables S",
 "$(PrintedPageNumber)");
...
// convert the file
item.Convert("Microsoft Word",
 @"C:\Test\Report.docx",
 @"C:\Test\Out\ConvertedReport");

Code Sample - VB.NET

Dim item As PNDocConvQueueServiceLib.IPNDocConvQueueItem

 ' Create the conversion item
item = New PNDocConvQueueServiceLib.PNDocConvQueueItem()

' Set conversion settings
item.Set("Devmode settings;Resolution", "300")
item.Set("Devmode settings;Color", "1")
item.Set("Save;Output File Format", "TIFF Serialized")

item.Set("Advanced File Naming;Format string S", "%s")
item.Set("Advanced File Naming;Variables S",
 "$(PrintedPageNumber)")
...
' convert the file
item.Convert("Microsoft Word", _
 "C:\Test\Report.docx", _
 "C:\Test\Out\ConvertedReport")

Conversion Settings - Advanced File Naming

Name: Advanced File Naming;Format string S

Format string for the serialized naming profile. Also used to name the sequence of
files when file splitting is enabled.

Values: A string containing the format string used to create the output file name. The format
string can contain placeholders %s and %d that correspond to the variables
passed in Advanced File Naming;Variables S below.

Document Conversion Service 3.0

485 Conversion Settings

Advanced File Naming

Conversion Settings - Advanced File Naming

Name: Advanced File Naming;Use default extension S

Use the default file extension for the output type when naming the output file.

Values: 0 - Do not use default file extension
1 - Use default file extension

Name: Advanced File Naming;Variables S

Comma-delimited list of variables that correspond to the placeholders in the format
string supplied in Advanced File Naming;Format string S above.

Values: See list of variables below.

Name: Advanced File Naming;Format string SJ

Format string for serialized with JobID naming profile. In this profile a JobID, a
number that is automatically incremented, is used as part of the filename.

Values: A string containing the format string used to create the output file name. The format
string can contain placeholders %s and %d that correspond to the variables
passed in Advanced File Naming;Variables SJ below.

Name: Advanced File Naming;Use default extension SJ

Use the default file extension for the output type when naming the output file.

Values: 0 - Do not use default file extension
1 - Use default file extension

Name: Advanced File Naming;Variables SJ

Comma-delimited list of variables that correspond to the placeholders in the format
string supplied in Advanced File Naming;Format string SJ above.

Values: See list of variables below.

Name: Advanced File Naming;Format string M

Format string for the multipaged naming profile.

Values: A string containing the format string used to create the output file name. The format
string can contain placeholders %s and %d that correspond to the variables
passed in Advanced File Naming;Variables M below.

486

Document Conversion Service 3.0

Conversion Settings

Advanced File Naming

Conversion Settings - Advanced File Naming

Name: Advanced File Naming;Use default extension M

Use the default file extension for the output type when naming the output file.

Values: 0 - Do not use default file extension
1 - Use default file extension

Name: Advanced File Naming;Variables M

Comma-delimited list of variables that correspond to the placeholders in the format
string supplied in Advanced File Naming;Format string M above.

Values: See list of variables below.

Name: Advanced File Naming;Format string MJ

Format string for the multipaged with JobID naming profile. In this profile a JobID, a
number that is automatically incremented, is used as part of the filename.

Values: A string containing the format string used to create the output file name. The format
string can contain placeholders %s and %d that correspond to the variables
passed in Advanced File Naming;Variables MJ below.

Name: Advanced File Naming;Use default extension MJ

Use the default file extension for the output type when naming the output file.

Values: 0 - Do not use default file extension
1 - Use default file extension

Name: Advanced File Naming;Variables MJ

Comma-delimited list of variables that correspond to the placeholders in the format
string supplied in Advanced File Naming;Format string MJ above.

Values: See list of variables below.

Document Conversion Service 3.0

487 Conversion Settings

Advanced File Naming

Variables for Custom Naming

Variable
Type and Format String

Place Holder
Description

$(Day)
Numeric, %d

The day in numeric format that the print
job was submitted to the printer, from 1-
31.

$(DocumentPageNumber)
Numeric, %d

The page number of the document
being printed.

$(FileExtension)
String, %s

The file extension for the type of file
being created.

$(FileNumber)

Numeric, %d

The file number of the sequence of files.
For multipaged output, this is always 1.
For serialized output this is the number
of the file in the sequence.

$(Hour)

Numeric, %d

The hour in numeric format that the print
job was submitted to the printer, 1-12 or
0-23 depending on your system
preferences.

$(JobID)

Numeric, %d

The unique JobID used by the printer.
This is set to zero when the driver is first
installed and is automatically
incremented by the driver at the start of
every print job. The JobID is often used
to ensure that all files created have
unique names.

$(JobStatus)
Numeric, %d

The status of the print job, 1 for success,
0 for failure.

$(MachineName)
String, %s

The name of the computer the print job
is running on.

$(Minute)
Numeric, %d

The minute in numeric format that the
print job was submitted to the printer,
from 0-59.

$(Month)
Numeric, %d

The month in numeric format that the
print job was submitted to the printer,
from 1-12.

$(OutputFileName)

String, %s

The contents of the $(OutputFileName)
field. If this field is empty the name the
printing application used when
submitting the print job is used.

$(PrintedPageNumber)
String, %s

The page number of the page being
printed; this is not always the same as
$(DocumentPageNumber).

488

Document Conversion Service 3.0

Conversion Settings

Advanced File Naming

Variable
Type and Format String

Place Holder
Description

$(Second)
Numeric, %d

The second in numeric format that the
print job was submitted to the printer,
from 0-59.

$(UserName)
String, %s

The name of the user who submitted the
print job.

$(Year)
Numeric, %d

The year in numeric format that the print
job was submitted to the printer.

Default Naming Profile Strings

Profile Format String Variables and Resulting File Names for TIFF Creation

Serialized %s_%3d $(OutputFileName)
$(FileNumber)

C:\Test\Invoice_001.tif
C:\Test\Invoice_002.tif
C:\Test\Invoice_003.tif
...

Serialized w/ JobID %3d_%s_%3d $(JobID)
$(OutputFileName)
$(FileNumber)

C:\Test\010_Invoice_001.tif
C:\Test\010_Invoice_002.tif
C:\Test\010_Invoice_003.tif
...

Multi-page %s $(OutputFileName)

C:\Test\Invoice.tif

Multi-page w/ JobID %3d_%s $(JobID)
$(OutputFileName)

C:\Test\011_Invoice.tif

Document Conversion Service 3.0

489 Conversion Settings

Image Options

Image Options

These options control the fax mode and creation of the output file. Table values in bold text are the default
value for that setting.

Sample Profile

<?xml version="1.0" encoding="utf-8"?>
<Profile Type="0"
 DisplayName="Create Fax TIFF Serialized"
 Description ="Create profile F fax 204 x 196">
 <Settings>

 <!-- Output file options -->
 <add Name="Devmode settings;Color" Value="1"/>
 <add Name="Image Options;Fax" Value="1"/>
 <add Name="Image Options;Fax Profile" Value="0"/>
 <add Name="Image Options;Fax Resolution" Value="3"/>
 <add Name="Save;Output File Format" Value="TIFF Serialized"/>
 ...

 </Settings>
</Profile>

Code Sample - C#

PNDocConvQueueServiceLib.PNDocConvQueueItem item = null;

// Create the conversion item
item = new PNDocConvQueueServiceLib.PNDocConvQueueItem();

// Set conversion settings
item.Set("Devmode settings;Color", "1");
item.Set("Image Options;Fax", "1");
item.Set("Image Options;Fax Profile", "0");
item.Set("Image Options;Fax Resolution", "3");
item.Set("Save;Output File Format", "TIFF Serialized");

...
// convert the file
item.Convert("Microsoft Word",
 @"C:\Test\Report.docx",
 @"C:\Test\Out\ConvertedReport");

490

Document Conversion Service 3.0

Conversion Settings

Image Options

Code Sample - VB.NET

Dim item As PNDocConvQueueServiceLib.IPNDocConvQueueItem

 ' Create the conversion item
item = New PNDocConvQueueServiceLib.PNDocConvQueueItem()

' Set conversion settings
item.Set("Devmode settings;Color", "1")
item.Set("Image Options;Fax", "1")
item.Set("Image Options;Fax Profile", "0")
item.Set("Image Options;Fax Resolution", "3")
item.Set("Save;Output File Format", "TIFF Serialized")
...
' convert the file
item.Convert("Microsoft Word", _
 "C:\Test\Report.docx", _
 "C:\Test\Out\ConvertedReport")

Conversion Settings - Image Options

Name: Image Options;Fax

Values: 0 - Do not create fax format file.
1 - Create an image where its width is limited to fax resolution as determined by
Fax Profile and Fax Resolution settings

Name: Image Options;Fax Profile

Values: 0 - Profile F, standard monochrome
1 - Profile S, simplified monochrome
2 - Profile C, color fax

Name: Image Options;Fax Resolution

Values: 0 - 200 x 100 resolution (Profile S, F)
1 - 200 x 200 resolution (Profile S, F, C)
2 - 204 x 98 resolution (Profile S, F)
3 - 204 x 196 resolution (Profile S, F)
4 - 300 x 300 resolution (Profile F, C)
5 - 400 x 400 resolution (Profile F, C)
6 - 408 x 391 resolution (Profile F)
7 - 204 x 391 resolution (Profile F)
8 - 300 x 600 resolution (Profile F)
9 - 400 x 800 resolution (Profile F)
10 - 600 x 600 resolution (Profile F, C)
11 - 600 x 1200 resolution (Profile F)
12 - 1200 x 1200 resolution (Profile F, C)
13 - 100 x 100 resolution (Profile F, C)

Document Conversion Service 3.0

491 Conversion Settings

Image Options

Conversion Settings - Image Options

Name: Image Options;Fax Use Printer Resolution

Values: 0 - Do not use printer resolution
1 - Use printer resolution

Name: Image Options;Fax Paper Width

Values: 0 - Letter
1 - Legal
2 - A4 (ISO)
3 - B4 (ISO)
4 - A3 (ISO)
5 - Auto

Name: Image Options;Fax Paper Height

Values: 0 - Variable height
1 - Fixed height

Name: Image Options;Fax Page Scaling

Values: 0 - Fit to Page
1 - Actual Size

Name: Image Options;Fax Page Scaling Auto Rotate

Values: 0 - Do not auto-rotate the page
1 - Auto-rotate the page if needed

Name: Image Options;Fax Page Scaling Lock Aspect Ratio

Values: 0 - Do not maintain fax page aspect ratio when scaling
1 - Maintain fax page aspect ratio when scaling

Name: Image Options;Fax Page Scaling Shrink Larger

Values: 0 - Do not shrink fax to fit on page
1 - Shrink fax to fit on page

492

Document Conversion Service 3.0

Conversion Settings

Image Options

Conversion Settings - Image Options

Name: Image Options;Fax Page Scaling H Align

Values: Left - Align image left
Middle - Align image in the center
Right - Align image right

Name: Image Options;Fax Page Scaling V Align

Values: Top - Align image top
Middle - Align image in the center
Bottom - Align image bottom

Name: Image Options;Fax Page Use 256 Greyscale Palette

Values: 0 - Use the smaller 64 grayscale palette
1 - Use 256 grayscale palette

Name: Image Options;Fill order

Values: LSB2MSB - Least significant bit to most significant bit
MSB2LSB - Most significant bit to least significant bit

Name: Image Options;EOLs Byte Aligned

Values: 0 - EOLs not byte aligned (no fillbits)
1 - EOLs byte aligned (use fillbits)

Name: Image Options;Photometric

Values: MinIsWhite
MinIsBlack

Name: Image Options;Include DateTime

Values: 0 - DateTime field not included in file
1 - DateTime field included in file

Name: Image Options;Motorola Format

Values: 0 - Use Intel byte order
1 - Use Motorola byte order

Document Conversion Service 3.0

493 Conversion Settings

Image Options

Conversion Settings - Image Options

Name: Image Options;Rotate portrait

Specified in degrees of rotation (counter-clockwise).

Values: 0
90
180
270

Name: Image Options;Rotate landscape

Specified in degrees of rotation (counter-clockwise).

Values: 0
90
180
270

Name: Image Options;Include Software Name and Release

Values: 0 - Software field not included in file
1 - Software field field included in file

494

Document Conversion Service 3.0

Conversion Settings

TIFF File Format

TIFF File Format

Table values in bold text are the default value for that setting.

Sample Profile

<?xml version="1.0" encoding="utf-8"?>
<Profile Type="0"
 DisplayName="Create Compressed TIFF Serialized"
 Description ="Create Compressed TIFF Serialized">
 <Settings>

 <!-- Output file options -->
 <add Name="Devmode settings;Color" Value="1"/>
 <add Name="Save;Output File Format" Value="TIFF Serialized"/>
 <add Name="Save;Color reduction" Value="Optimal"/>
 <add Name="TIFF File Format;BW compression" Value="Group3-2D"/>
 <add Name="TIFF File Format;Color compression" Value="LZW"/>
 ...

 </Settings>
</Profile>

Code Sample - C#

PNDocConvQueueServiceLib.PNDocConvQueueItem item = null;

// Create the conversion item
item = new PNDocConvQueueServiceLib.PNDocConvQueueItem();

// Set conversion settings
item.Set("Devmode settings;Color", "1");
item.Set("Save;Output File Format", "TIFF Serialized");
item.Set("Save;Color reduction", "Optimal");
item.Set("TIFF File Format;BW compression", "Group3-2D");
item.Set("TIFF File Format;Color compression", "LZW");
...
// convert the file
item.Convert("Microsoft Word",
 @"C:\Test\Report.docx",
 @"C:\Test\Out\ConvertedReport");

Document Conversion Service 3.0

495 Conversion Settings

TIFF File Format

Code Sample - VB.NET

Dim item As PNDocConvQueueServiceLib.IPNDocConvQueueItem

 ' Create the conversion item
item = New PNDocConvQueueServiceLib.PNDocConvQueueItem()

' Set conversion settings
item.Set("Devmode settings;Color", "1")
item.Set("Save;Output File Format", "TIFF Serialized")
item.Set("Save;Color reduction", "Optimal")
item.Set("TIFF File Format;BW compression", "Group3-2D")
item.Set("TIFF File Format;Color compression", "LZW")
...
' convert the file
item.Convert("Microsoft Word", _
 "C:\Test\Report.docx", _
 "C:\Test\Out\ConvertedReport")

Conversion Settings - TIFF File Format

Name: TIFF File Format;BW compression

Values: None - No black and white compression
Group4 - CCITT Group4 Fax compression
Group3-2D - CCITT Group3 2D Fax compression
Group3-1D - CCITT Group3 1D Fax compression
MH - CCITT Modified Huffman compression
LZW - LZW compression
Packbits - Packbits (RLE) compression

Name: TIFF File Format;Color compression

Values: Uncompressed RGB - No color compression
Uncompressed CMYK - No color compression, CMYK color
Packbits RGB -Packbits (RLE) compression
Packbits CMYK -Packbits (RLE) compression, CMYK color
High quality JPEG - High quality JPEG compression
Medium quality JPEG - Medium quality JPEG compression
Low quality JPEG - Low quality JPEG compression
LZW RGB - LZW compression
LZW CMYK - LZW compression, CMYK color

Name: TIFF File Format;Indexed compression

Values: Uncompressed - No color compression
Packbits - Packbits (RLE) compression
High quality JPEG - High quality JPEG compression
Medium quality JPEG - Medium quality JPEG compression
Low quality JPEG - Low quality JPEG compression
LZW - LZW compression

496

Document Conversion Service 3.0

Conversion Settings

TIFF File Format

Conversion Settings - TIFF File Format

Name: TIFF File Format;Greyscale compression

Values: Uncompressed - No color compression
Packbits - Packbits (RLE) compression
High quality JPEG - High quality JPEG compression
Medium quality JPEG - Medium quality JPEG compression
Low quality JPEG - Low quality JPEG compression
LZW - LZW compression

Document Conversion Service 3.0

497 Conversion Settings

PDF File Format

PDF File Format

These options control the compression methods used during the creation of PDF output files. Table values
in bold text are the default value for that setting.

Sample Profile

<?xml version="1.0" encoding="utf-8"?>
<Profile Type="0"
 DisplayName="Create PDF/A "
 Description ="Create PDF/A-1b">
 <Settings>

 <!-- Output file options -->
 <add Name ="Devmode settings;Color" Value="1"/>
 <add Name ="Save;Output File Format" Value="PDF Multipaged"/>
 <add Name ="Save;Prompt" Value="0"/>
 <add Name ="Save;Overwrite" Value="1"/>
 <add Name ="PDF File Format;PDF Standard" Value="PDF/A-1b"/>
 <add Name ="PDF File Format;Use compression" Value="1"/>
 ...

 </Settings>
</Profile>

Code Sample - C#

PNDocConvQueueServiceLib.PNDocConvQueueItem item = null;

// Create the conversion item
item = new PNDocConvQueueServiceLib.PNDocConvQueueItem();

// Set conversion settings
item.Set("Devmode settings;Color", "1");
item.Set("Save;Output File Format", "PDF Multipaged");
item.Set("Save;Prompt", "0");
item.Set("Save;Overwrite", "1");
item.Set("PDF File Format;PDF Standard", "PDF/A-1b");
item.Set("PDF File Format;Use compression", "1");

...
// convert the file
item.Convert("Microsoft Word",
 @"C:\Test\Report.docx",
 @"C:\Test\Out\ConvertedReport");

498

Document Conversion Service 3.0

Conversion Settings

PDF File Format

Code Sample - VB.NET

Dim item As PNDocConvQueueServiceLib.IPNDocConvQueueItem

 ' Create the conversion item
item = New PNDocConvQueueServiceLib.PNDocConvQueueItem()

' Set conversion settings
item.Set("Devmode settings;Color", "1")
item.Set("Save;Output File Format", "PDF Multipaged")
item.Set("Save;Prompt", "0")
item.Set("Save;Overwrite", "1")
item.Set("PDF File Format;PDF Standard", "PDF/A-1b")
item.Set("PDF File Format;Use compression", "1")
...
' convert the file
item.Convert("Microsoft Word", _
 "C:\Test\Report.docx", _
 "C:\Test\Out\ConvertedReport")

Conversion Settings - PDF File Format

Name: PDF File Format;Embed Pages as Images

Values: 0 - Creates vector pages, where possible, in the PDF file; does not OCR
1 - Embeds each page of the PDF as an image, creating a raster PDF

Name: PDF File Format;Include Outline
This setting applies only when creating vector PDF files, and only if the source file
contains outline information. Outline information is shown as bookmarks in a PDF
document.

Values: 0 - Does not include outline information in vector PDF files
1 - Includes outline (heading) information, where possible, in vector PDF files

Name: PDF File Format;Use compression

Values: 0 - Do not compress the file
1 - Enable compression for the file

Name: PDF File Format;Use ASCII

Values: 0 - No ASCII format compression
1 - Enable ASCII format compression

Name: PDF File Format;PDF Standard

Values: None - Create PDF files that are not PDF/A-1b compliant
PDF/A-1b - Create PDF/A-1b compliant PDF files when creating raster PDF

Document Conversion Service 3.0

499 Conversion Settings

PDF File Format

Conversion Settings - PDF File Format

Name: PDF File Format;Content encoding

Values: None - No compression
ZIP - ZIP compression
RLE - Packbits (run length) compression
LZW - LZW compression

Name: PDF File Format;Color compression

Values: None - No color compression
ZIP - ZIP compression
RLE - Packbits (run length) compression
JPEG High - High quality JPEG compression
JPEG Medium - Medium quality JPEG compression
JPEG Low - Low quality JPEG compression
LZW - LZW compression

Name: PDF File Format;Greyscale compression

Values: None - No color compression
ZIP - ZIP compression
RLE - Packbits (run length) compression
JPEG High - High quality JPEG compression
JPEG Medium - Medium quality JPEG compression
JPEG Low - Low quality JPEG compression
LZW - LZW compression

Name: PDF File Format;Indexed compression

Values: None - No color compression
ZIP - ZIP compression
RLE - Packbits (run length) compression
JPEG High - High quality JPEG compression
JPEG Medium - Medium quality JPEG compression
JPEG Low - Low quality JPEG compression
LZW - LZW compression

Name: PDF File Format;BW compression

Values: None - No black and white compression
Group4 - CCITT Group4 Fax compression
Group3-2D - CCITT Group3 2D Fax compression
Group3-1D -CCITT Group3 1D Fax compression

500

Document Conversion Service 3.0

Conversion Settings

PDF Security

PDF Security

These options control the security options available in creation of PDF output files. Table values in bold
text are the default value for that setting.

Sample Profile

<?xml version="1.0" encoding="utf-8"?>
<Profile Type="0"
 DisplayName="Create secure PDF "
 Description ="Create secure PDF, no password">
 <Settings>

 <!-- Output file options -->
 <add Name ="Devmode settings;Color" Value="1"/>
 <add Name ="Save;Output File Format" Value="PDF Multipaged"/>
 <add Name ="Save;Prompt" Value="0"/>
 <add Name ="Save;Overwrite" Value="1"/>
 <add Name ="PDF File Format;PDF Standard" Value="None"/>
 <add Name ="PDF File Format;Use compression" Value="1"/>
 <add Name ="PDF Security;Use Security" Value="1"/>
 <add Name ="PDF Security;Encrypt Level" Value="1"/>
 ...

 </Settings>
</Profile>

Code Sample - C#

PNDocConvQueueServiceLib.PNDocConvQueueItem item = null;

// Create the conversion item
item = new PNDocConvQueueServiceLib.PNDocConvQueueItem();

// Set conversion settings
item.Set("Devmode settings;Color", "1");
item.Set("Save;Output File Format", "PDF Multipaged");
item.Set("Save;Prompt", "0");
item.Set("Save;Overwrite", "1");
item.Set("PDF File Format;PDF Standard", "None");
item.Set("PDF File Format;Use compression", "1");
item.Set("PDF Security;Use Security", "1");
item.Set("PDF Security;Encrypt Level", "1");

...
// convert the file
item.Convert("Microsoft Word",
 @"C:\Test\Report.docx",
 @"C:\Test\Out\ConvertedReport");

Document Conversion Service 3.0

501 Conversion Settings

PDF Security

Code Sample - VB.NET

Dim item As PNDocConvQueueServiceLib.IPNDocConvQueueItem

 ' Create the conversion item
item = New PNDocConvQueueServiceLib.PNDocConvQueueItem()

' Set conversion settings
item.Set("Devmode settings;Color", "1")
item.Set("Save;Output File Format", "PDF Multipaged")
item.Set("Save;Prompt", "0")
item.Set("Save;Overwrite", "1")
item.Set("PDF File Format;PDF Standard", "None")
item.Set("PDF File Format;Use compression", "1")
item.Set("PDF Security;Use Security", "1")
item.Set("PDF Security;Encrypt Level", "1")
...
' convert the file
item.Convert("Microsoft Word", _
 "C:\Test\Report.docx", _
 "C:\Test\Out\ConvertedReport")

Conversion Settings - PDF Security

Name: PDF Security;Use Security

Values: 0 - No PDF security
1 - Enable PDF security

Name: PDF Security;Encrypt Level

Values: Values:
0 - Sets 40-bit encryption level
1 - Sets 128-bit encryption level

Name: PDF Security;Can Copy

Values: 0 - Do not allow users to copy text and graphics
1 - Allow users to copy text and graphics

Name: PDF Security;Can Print

Values: 0 - Do not allow users to print the document
1 - Allow users to print the document

Name: PDF Security;Can Change Doc

Values: 0 - Do not allow users to change the document
1 - Allow users to change the document

502

Document Conversion Service 3.0

Conversion Settings

PDF Security

Conversion Settings - PDF Security

Name: PDF Security;Can ChangeOther

Values: 0 - Do not allow users to add or change comments and form fields
1 - Allow users to add or change comments and form fields

Name: PDF Security;User Pswd On

Values: 0 - No user password required to open document
1 - User password required to open document

Name: PDF Security;User Pswd

Values: The user password.

Name: PDF Security;Owner Pswd On

Values: 0 - No owner password required to change document
1 - Owner password required to change document

Name: PDF Security;Owner Pswd

Values: Owner password

Document Conversion Service 3.0

503 Conversion Settings

JPEG File Format

JPEG File Format

These options control the compression levels of JPEG files. Table values in bold text are the default value
for that setting.

Sample Profile

<?xml version="1.0" encoding="utf-8"?>
<Profile Type="0"
 DisplayName="JPEG 300dpi"
 Description ="Create JPEG, compress color as Medium, grey as High.">
 <Settings>

 <!-- Output file options -->
 <add Name="Devmode settings;Resolution" Value="300"/>
 <add Name ="Save;Output File Format" Value="JPEG"/>
 <add Name ="Save;Prompt" Value="0"/>
 <add Name ="Save;Overwrite" Value="1"/>
 <add Name ="Save;Color reduction" Value="Optimal"/>
 <add Name ="JPEG File Format;Color compression" Value="Medium Quality"/>
 <add Name ="JPEG File Format;Greyscale compression" Value="High Quality"/>
 ...

 </Settings>
</Profile>

Code Sample - C#

PNDocConvQueueServiceLib.PNDocConvQueueItem item = null;

// Create the conversion item
item = new PNDocConvQueueServiceLib.PNDocConvQueueItem();

// Set conversion settings
item.Set("Devmode settings;Resolution", "300");
item.Set("Save;Output File Format", "JPEG");
item.Set("Save;Prompt", "0");
item.Set("Save;Overwrite", "1");
item.Set("Save;Color reduction", "Optimal");
item.Set("JPEG File Format;Color compression", "Medium Quality");
item.Set("JPEG File Format;Greyscale compression", "High Quality");
...
// convert the file
item.Convert("Microsoft Word",
 @"C:\Test\Report.docx",
 @"C:\Test\Out\ConvertedReport");

504

Document Conversion Service 3.0

Conversion Settings

JPEG File Format

Code Sample - VB.NET

Dim item As PNDocConvQueueServiceLib.IPNDocConvQueueItem

 ' Create the conversion item
item = New PNDocConvQueueServiceLib.PNDocConvQueueItem()

' Set conversion settings
item.Set("Devmode settings;Resolution", "300")
item.Set("Save;Output File Format", "JPEG")
item.Set("Save;Prompt", "0")
item.Set("Save;Overwrite", "1")
item.Set("Save;Color reduction", "Optimal")
item.Set("JPEG File Format;Color compression", "Medium Quality")
item.Set("JPEG File Format;Greyscale compression", "High Quality")
...
' convert the file
item.Convert("Microsoft Word", _
 "C:\Test\Report.docx", _
 "C:\Test\Out\ConvertedReport")

Conversion Settings - JPEG File Format

Name: JPEG File Format;Color compression

Values: High Quality - High quality JPEG compression
Medium Quality - Medium quality JPEG compression
Low Quality - Low quality JPEG compression

Name: JPEG File Format;Greyscale compression

Values: High Quality - High quality JPEG compression
Medium Quality - Medium quality JPEG compression
Low Quality - Low quality JPEG compression

Document Conversion Service 3.0

505 Conversion Settings

Processing

Processing

These options allow you to do extra processing to the image, such as trimming whitespace, cropping and
resampling. Table values in bold text are the default value for that setting.

Sample Profile

<?xml version="1.0" encoding="utf-8"?>
<Profile Type="0"
 DisplayName="TIFF 300dpi Serialized with Trim"
 Description ="Create TIFF serialized, trim whitespace">
 <Settings>

 <!-- Output file options -->
 <add Name="Devmode settings;Resolution" Value="300"/>
 <add Name ="Save;Output File Format" Value="TIFF Serialized"/>
 <add Name ="Save;Prompt" Value="0"/>
 <add Name ="Processing;Trim Threshold" Value="0"/>
 <add Name ="Processing;Trim left" Value="1"/>
 <add Name ="Processing;Trim top" Value="1"/>
 <add Name ="Processing;Trim bottom" Value="1"/>
 <add Name ="Processing;Trim right" Value="1"/>
 ...

 </Settings>
</Profile>

Code Sample - C#

PNDocConvQueueServiceLib.PNDocConvQueueItem item = null;

// Create the conversion item
item = new PNDocConvQueueServiceLib.PNDocConvQueueItem();

// Set conversion settings
item.Set("Devmode settings;Resolution", "300");
item.Set("Save;Output File Format", "TIFF Serialized");
item.Set("Save;Prompt", "0");
item.Set("Processing;Trim Threshold", "0");
item.Set("Processing;Trim left", "1");
item.Set("Processing;Trim top", "1");
item.Set("Processing;Trim bottom", "1");
item.Set("Processing;Trim right", "1");
...
// convert the file
item.Convert("Microsoft Word",
 @"C:\Test\Report.docx",
 @"C:\Test\Out\ConvertedReport");

506

Document Conversion Service 3.0

Conversion Settings

Processing

Code Sample - VB.NET

Dim item As PNDocConvQueueServiceLib.IPNDocConvQueueItem

 ' Create the conversion item
item = New PNDocConvQueueServiceLib.PNDocConvQueueItem()

' Set conversion settings
item.Set("Devmode settings;Resolution", "300")
item.Set("Save;Output File Format", "TIFF Serialized")
item.Set("Save;Prompt", "0")
item.Set("Processing;Trim Threshold", "0")
item.Set("Processing;Trim left", "1")
item.Set("Processing;Trim top", "1")
item.Set("Processing;Trim bottom", "1")
item.Set("Processing;Trim right", "1")
...
' convert the file
item.Convert("Microsoft Word", _
 "C:\Test\Report.docx", _
 "C:\Test\Out\ConvertedReport")

Conversion Settings - Processing

Name: Processing;Units

Specifies what unit of measurement is used for settings such as custom paper
width or hardware margin. Units can be entered in inches (8.50in) or centimeters
(21.59cm), provided the unit designation of inches (in) or centimeters (cm) is given.
Also accepted are units entered in as hundredths of an inch (.01 Inches) or tenths
of a millimeter(.1 Millimeters)

Values: .01 Inches
.1 Millimeters

Name: Processing;Trim left

Trim all areas from the left side of the page, based on the Trim Threshold below.

Values: 0 - Do not trim left side of page
1 - Trim left side of page

Name: Processing;Trim top

Trim all areas from the top edge of the page, based on the Trim Threshold below.

Values: 0 - Do not trim top of page
1 - Trim top of page

Document Conversion Service 3.0

507 Conversion Settings

Processing

Conversion Settings - Processing

Name: Processing;Trim right

Trim all areas from the right side of the page, based on the Trim Threshold below.

Values: 0 - Do not trim right side of page
1 - Trim right side of page

Name: Processing;Trim bottom

Trim all areas from the bottom edge of the page, based on the Trim Threshold
below.

Values: 0 - Do not trim bottom of page
1 - Trim bottom of page

Name: Processing;Trim Threshold

All areas on the chosen sides of the image that fall at or below the chosen intensity
level, or trim threshold. The intensity level is used to decide what pixels get thrown
away. Colors are converted to a grayscale palette, and then compared to the
chosen intensity level. Trimming on any side stops as soon as a pixel is
encountered that is greater the chosen level. 0 is white, and 100 is black.

Values: 0-100

Name: Processing;Crop

Enable or disable the cropping options.

Values: 0 - Disable cropping
1 - Enable cropping

Name: Processing;Crop Option

Cropping can be specified in either of two ways: as page margins, or as a central
area or region on the page.

Values: 0 - Crop region
1 - Crop margins

508

Document Conversion Service 3.0

Conversion Settings

Processing

Conversion Settings - Processing

Name: Processing;Crop left

Applies when Crop Option is set to crop region.

Values: 0 - 8000000 - Range in hundredths of an inch
0 - 20000000 - Range in tenths of a millimeter
0.000in - 80000.000in - Range in inches
0.000cm - 200000.000cm - Range in centimeters

Name: Processing;Crop top

Applies when Crop Option is set to 0 for crop region.

Values: Same as Processing;Crop left above

Name: Processing;Crop width

Applies when Crop Option is set to 0 for crop region.

Values: Same as Processing;Crop left above.

Name: Processing;Crop height

Applies when Crop Option is set to 0 for crop region.

Values: Same as Processing;Crop left above

Name: Processing;Crop margin left

Applies when Crop Option is set to 1 for crop margins.

Values: Same as Processing;Crop left above

Name: Processing;Crop margin top

Applies when Crop Option is set to 1 for crop margins

Values: Same as Processing;Crop left above

Document Conversion Service 3.0

509 Conversion Settings

Processing

Conversion Settings - Processing

Name: Processing;Crop margin right

Applies when Crop Option is set to 1 for crop margins

Values: Same as Processing;Crop left above

Name: Processing;Crop margin bottom

Applies when Crop Option is set to 1 for crop margins

Values: Same as Processing;Crop left above

Name: Processing;Copy

Enable or disable the copy options. The Copy feature allow you to copy each page
of the document to a larger or smaller page.

Values: 0 - Disable copy options
1 - Enable copy options

Name: Processing;Copy to width

The width of the new image

Values: 0 - 8000000 - Range in hundredths of an inch
0 - 20000000 - Range in tenths of a millimeter
0.000in - 80000.000in - Range in inches
0.000cm - 200000.000cm - Range in centimeters

Name: Processing;Copy to height

The height of the new image.

Values: Same as Processing;Copy to width above.

Name: Processing;Copy to IAM Left

The desired left area margin settings for the new image.

Values: Same as Processing;Copy to width above

510

Document Conversion Service 3.0

Conversion Settings

Processing

Conversion Settings - Processing

Name: Processing;Copy to IAM Top

The desired top area margin settings for the new image.

Values: Same as Processing;Copy to width above

Name: Processing;Copy to IAM Right

The desired right area margin settings for the new image.

Values: Same as Processing;Copy to width above

Name: Processing;Copy to IAM Bottom

The desired bottom area margin settings for the new image.

Values: Same as Processing;Copy to width above

Name: Processing;Copy H align

How to horizontally align the copied image area.

Values: Left - Align the copied image to the left on the page
Middle - Align the copied image horizontally center on the page
Right - Align the copied image to the right of the page

Name: Processing;Copy V align

How to vertically align the copied image area.

Values: Top - Align the copied image to the top of the page
Middle - Align the copied image vertically centered on the page
Bottom - Align the copied image to the bottom of the page

Name: Processing;Copy Page Scaling

How to place the original page in the new image.

Values: 0 - Fit to Page
1 - Actual Size

Document Conversion Service 3.0

511 Conversion Settings

Processing

Conversion Settings - Processing

Name: Processing;Copy Page Scaling Shrink Larger

Scales the image down to fit the new image size if the original image is larger.

Values: 0 - Do not shrink page to fit
1 - Shrink page to fit

Name: Processing;Copy Page Scaling Lock Aspect Ratio

Use this option on to prevent distortion when scaling larger or smaller image to
different image sizes.

Values: 0 - Do not maintain page aspect ratio when scaling
1 - Maintain page aspect ratio when scaling

Name: Processing;Resample

Scale the output file to a particular width and height in pixels, as a percentage of
the original size, or by setting a new image resolution (DPI).

Values: 0 - Disable resampling options
1 - Enable resampling options

Name: Processing;Resample Units

Values: 0 - Pixels
1 - Percentage
2 - DPI

Name: Processing;Resample Lock Aspect Ratio

Values: 0 - Do not maintain page aspect ratio when resampling
1 - Maintain page aspect ratio when resampling

Name: Processing;Resample Pixels Width

Desired width in pixels.

Values: 0-4294967295 pixels, default width is 200.

512

Document Conversion Service 3.0

Conversion Settings

Processing

Conversion Settings - Processing

Name: Processing;Resample Pixels Height

Desired height in pixels.

Values: 0-4294967295 pixels, default height is 200.

Name: Processing;Resample Width Percentage

Change the width as a percentage of the original size.

Values: 1 to 500, default is 100.

Name: Processing;Resample Height Percentage

Change the height as a percentage of the original size.

Values: 1 to 500, default is 100

Name: Processing;Resample X DPI

Change the X resolution of the image.

Values: 50-3600, default is 200

Name: Processing;Resample Y DPI

Change the Y resolution of the image.

Values: 50-3600, default is 200

Name: Processing;Brightness Adjust

Allows you to lighten or darken the images or text on your incoming pages.

Values: --100 to -1 - darkens the image
0 - no change
1 to 100 - lightens the image

Name: Processing;Rotate portrait

Rotates portrait orientated images the desired degrees counter-clockwise.

Values: 0, 90, 180, or 270

Document Conversion Service 3.0

513 Conversion Settings

Processing

Conversion Settings - Processing

Name: Processing;Rotate landscape

Rotates landscape orientated images the desired degrees counter-clockwise.

Values: 0, 90, 180, or 270

514

Document Conversion Service 3.0

Conversion Settings

Advanced Features

Advanced Features

These options allow control of some of the advanced features, such as custom paper size and text
extraction. Table values in bold text are the default value for that setting.

Sample Profile

<?xml version="1.0" encoding="utf-8"?>
<Profile Type="0"
 DisplayName="TIFF 300dpi Serialized Extract Text"
 Description ="TIFF 300dpi Serialized Extract Text">
 <Settings>

 <!-- Output file options -->
 <add Name="Devmode settings;Resolution" Value="300"/>
 <add Name ="Save;Output File Format" Value="TIFF Serialized"/>
 <add Name ="Save;Prompt" Value="0"/>
 <add Name ="Advanced Features;Extract Text" Value="1"/>
 <add Name ="Advanced Features;Extract Text Layout" Value="Physical"/>
 ...

 </Settings>
</Profile>

Code Sample - C#

PNDocConvQueueServiceLib.PNDocConvQueueItem item = null;

// Create the conversion item
item = new PNDocConvQueueServiceLib.PNDocConvQueueItem();

// Set conversion settings
item.Set("Devmode settings;Resolution", "300");
item.Set("Save;Output File Format", "TIFF Serialized");
item.Set("Save;Prompt", "0");
item.Set("Advanced Features;Extract Text", "1");
item.Set("Advanced Features;Extract Text Layout", "Physical");
...
// convert the file
item.Convert("Microsoft Word",
 @"C:\Test\Report.docx",
 @"C:\Test\Out\ConvertedReport");

Document Conversion Service 3.0

515 Conversion Settings

Advanced Features

Code Sample - VB.NET

Dim item As PNDocConvQueueServiceLib.IPNDocConvQueueItem

 ' Create the conversion item
item = New PNDocConvQueueServiceLib.PNDocConvQueueItem()

' Set conversion settings
item.Set("Devmode settings;Resolution", "300")
item.Set("Save;Output File Format", "TIFF Serialized")
item.Set("Save;Prompt", "0")
item.Set("Advanced Features;Extract Text", "1")
item.Set("Advanced Features;Extract Text Layout", "Physical")
...
' convert the file
item.Convert("Microsoft Word", _
 "C:\Test\Report.docx", _
 "C:\Test\Out\ConvertedReport")

Conversion Settings - Advanced Features

Name: Advanced Features;Units

Specifies what unit of measurement is used for settings such as custom paper
width or hardware margin. Units can be entered in inches (8.50in) or centimeters
(21.59cm), provided the unit designation of inches (in) or centimeters (cm) is given.
Also accepted are units entered in as hundredths of an inch (.01 Inches) or tenths
of a millimeter(.1 Millimeters).

Values: .01 Inches
.1 Millimeters

Name: Advanced Features;Custom Paper Enable

Enable or disable custom paper size.

Values: 0 - disable custom paper size
1 - enable custom paper size

Name: Advanced Features;Custom Paper Width

Specify the width of the custom paper size. Custom Paper Enable must be 1 for
this to be used.

Values: 25 - 8000000 (default 850) - Range in hundredths of an inch
64 - 20000000 - Range in tenths of a millimeter
0.250in - 80000.000in - Range in inches
0.640cm-200000.000cm - Range in centimeters

516

Document Conversion Service 3.0

Conversion Settings

Advanced Features

Conversion Settings - Advanced Features

Name: Advanced Features;Custom Paper Height

Specify the height of the custom paper size. Custom Paper Enable must be 1 for
this to be used.

Values: 25 - 8000000 (default 1100) - Range in hundredths of an inch
64 - 20000000 - Range in tenths of a millimeter
0.250in - 80000.000in - Range in inches
0.640cm-200000.000cm - Range in centimeters

Name: Advanced Features;Hardware Margin Left

Values: 0 - 100 (default = 0) - Range in hundredths of an inch
0 - 254 - Range in tenths of a millimeter
0.000in-1.000in - Range in inches
0.000cm-2.540cm - Range in centimeters

Name: Advanced Features;Hardware Margin Top

Values: 0 - 100 (default = 0) - Range in hundredths of an inch
0 - 254 - Range in tenths of a millimeter
0.000in-1.000in - Range in inches
0.000cm-2.540cm - Range in centimeters

Name: Advanced Features;Printer Area Margin Left

Values: 0 - 8000000 (default = 0) - Range in hundredths of an inch
0 - 20000000 - Range in tenths of a millimeter
0.000in - 80000.000in - Range in inches
0.000cm-200000.000cm - Range in centimeters

Name: Advanced Features;Printer Area Margin Top

Values: 0 - 8000000 (default = 0) - Range in hundredths of an inch
0 - 20000000 - Range in tenths of a millimeter
0.000in - 80000.000in - Range in inches
0.000cm-200000.000cm - Range in centimeters

Name: Advanced Features;Printer Area Margin Right

Values: 0 - 8000000 (default = 0) - Range in hundredths of an inch
0 - 20000000 - Range in tenths of a millimeter
0.000in - 80000.000in - Range in inches
0.000cm-200000.000cm - Range in centimeters

Document Conversion Service 3.0

517 Conversion Settings

Advanced Features

Conversion Settings - Advanced Features

Name: Advanced Features;Printer Area Margin Bottom

Values: 0 - 8000000 (default = 0) - Range in hundredths of an inch
0 - 20000000 - Range in tenths of a millimeter
0.000in - 80000.000in - Range in inches
0.000cm-200000.000cm - Range in centimeters

Name: Advanced Features;Extract Text

Enable this to also create a separate text file containing all of the textual elements
of your source document.

Values: 0 - do not extract text
1 - extract text into a separate text file

Name: Advanced Features;Extract Text Filepath

Path to file receiving extracted text.

Values: Full path to file to store text.

Name: Advanced Features;Extract Text Layout

Choose the layout of the text file.

Values: Physical
 Matches the format of the text in the original file.
Raw
 Saves the text in the order in which it was sent to the driver. This may not be the
same order in the original file.
None
 No formatting is attempted. All text is written to the file as it is received

Name: Advanced Features;Extract Text Encoding

Choose the encoding of the text file.

Values: ANSI
UTF-8
UTF-16

518

Document Conversion Service 3.0

Conversion Settings

Advanced Features

Conversion Settings - Advanced Features

Name: Advanced Features;Extract Text EOL

Values: Windows
 Lines end with the CRLF line feed
Mac
 Lines end with the LF line feed
Unix
 Lines end with the CR line feed

Name: Advanced Features;Extract Text Emit Page Breaks

Values: 0
1

Name: Advanced Features;Control Strings Enabled

Values: 0
1

Document Conversion Service 3.0

519 Conversion Settings

Watermark Stamping

Watermark Stamping

These options allow the placement of a centered, diagonal watermark on each page. The watermark text
runs from bottom left to the top right of the page with the outline of each letter being printed. Table values
in bold text are the default value for that setting.

Sample Profile

<?xml version="1.0" encoding="utf-8"?>
<Profile Type="0"
 DisplayName="TIFF 300dpi Serialized Extract Text"
 Description ="TIFF 300dpi Serialized Extract Text">
 <Settings>

 <!-- Output file options -->
 <add Name="Devmode settings;Resolution" Value="300"/>
 <add Name ="Save;Output File Format" Value="TIFF Serialized"/>
 <add Name ="Save;Prompt" Value="0"/>
 <add Name ="WatermarkStamp;Enabled" Value="1"/>
 <add Name ="WatermarkStamp;CenteredDiagonalText" Value="DRAFT"/>
 <add Name ="WatermarkStamp;CenteredDiagonalFontSizeInPoints" Value="36"/>
 ...

 </Settings>
</Profile>

Code Sample - C#

PNDocConvQueueServiceLib.PNDocConvQueueItem item = null;

// Create the conversion item
item = new PNDocConvQueueServiceLib.PNDocConvQueueItem();

// Set conversion settings
item.Set("Devmode settings;Resolution", "300");
item.Set("Save;Output File Format", "TIFF Serialized");
item.Set("Save;Prompt", "0");
item.Set("WatermarkStamp;Enabled", "1");
item.Set("WatermarkStamp;CenteredDiagonalText", "DRAFT");
item.Set("WatermarkStamp;CenteredDiagonalFontSizeInPoints", "36");
...
// convert the file
item.Convert("Microsoft Word",
 @"C:\Test\Report.docx",
 @"C:\Test\Out\ConvertedReport");

520

Document Conversion Service 3.0

Conversion Settings

Watermark Stamping

Code Sample - VB.NET

Dim item As PNDocConvQueueServiceLib.IPNDocConvQueueItem

 ' Create the conversion item
item = New PNDocConvQueueServiceLib.PNDocConvQueueItem()

' Set conversion settings
item.Set("Devmode settings;Resolution", "300")
item.Set("Save;Output File Format", "TIFF Serialized")
item.Set("Save;Prompt", "0")
item.Set("WatermarkStamp;Enabled", "1")
item.Set("WatermarkStamp;CenteredDiagonalText", "DRAFT")
item.Set("WatermarkStamp;CenteredDiagonalFontSizeInPoints", "36")
...
' convert the file
item.Convert("Microsoft Word", _
 "C:\Test\Report.docx", _
 "C:\Test\Out\ConvertedReport")

Conversion Settings - Advanced Features

Name: WatermarkStamp;Enabled

Enable or disable the watermark stamping feature.

Values: 0 - disable watermark stamping
1 - enable watermark stamping

Name: WatermarkStamp;CenteredDiagonalText

Values: The text to display as the watermark stamp.

Name: WatermarkStamp;CenteredDiagonalFontSizeInPoints

Values: The font size of the watermark text in points. Default is 36.

Document Conversion Service 3.0

521 Advanced Configuration

Advanced Configuration

The topics covered in this section discuss configuration options that can be applied to help you get the
most from Document Conversion Service. Reading this section will allow you to tailor the resources used
by the conversion service to give you optimal performance.

Changing the Application Configuration

When making changes to the application configuration file, Document Conversion Service will need
to be restarted to pick up the changes.

The topics discussed will allow you to

· set the number of parallel conversions based in the number of CPUs and cores on the computer

· only load the converters for the document types you need to convert

· adjust the application pool to meet the demands of the number of documents you expect to
process

522

Document Conversion Service 3.0

Advanced Configuration

Configuring Parallel Processing

Configuring Parallel Processing

The Document Conversion Service is designed to process many documents in parallel, up to the limits of
your license model. The following settings are used to control the number documents and printers in
parallel:

Setting Name Value

NumberOfDocumentsInParallel Number of documents that can be converted at the same
time.

NumberOfPrinters Controls the size of the Document Conversion Service
printer pool.

These values are set to the keyword "auto" when first installed, which means that Document Conversion
Service will automatically determine an appropriate value for these numbers based on the number of
CPU's and cores on your computer. We recommend you leave this set to "auto" to get the best experience
from Document Conversion Service. Setting this to a value that is too high for the capabilities of the
computer can cause the computer to work very slowly.

The formula used for determining how many documents your system can handle is to multiply the number
of cores per CPU by the number of CPU's and multiply that by 1.5. As an example, a single CPU system
with 4 cores would be able to process 6 documents in parallel at a time:

(number of cores per CPU × number of CPU's) × 1.5 =
(4 × 1) × 1.5 = 6 documents in parallel

Once the maximum value for the number of documents has been determined, this number is also
compared against your purchased license (or the fact that you are running a trial version) and capped at
the number of document in parallel allowed by your license model. You can, of course, always set this
number lower as needed to balance this with other applications and services running on your computer.

Setting the Number of Documents in Parallel

The number of documents to process in parallel is stored as a collection of key-value pairs written in
XML in the General section of the Document Conversion Service application configuration file. See
General Application Settings for a complete list of all settings that can be changed in the General
section.

General Configuration Section

 <!-- General configuration options-->
 <General>
 <Settings>
 <!-- Maximum number of printers and threads is determined by your license model. -->
 <add Name="NumberOfDocumentsInParallel" Value="auto"/>
 <add Name="NumberOfPrinters" Value="auto"/>
 ...

 </Settings>
</General>

Opening the Configuration File

Go to Start - All Programs - PEERNET Document Conversion Service 3.0 - Edit
DCS Configuration File to edit the configuration file using the DCS Editor. The configuration file
can also be opened in any XML editor and can be found here:

Document Conversion Service 3.0

523 Advanced Configuration

Configuring Parallel Processing

Configuration file location:

C:\Program Files\Document Conversion Service 3.0\Core\PNJobItemProcessor.exe.config

Setting the Number of Documents in Parallel

1. Once open in the DCS Editor, find and locate the <General> section.

2. In the <Settings> section, modify the NumberOfDocumentsInParallel value to the desired
number to change how many documents are converted in parallel. Leave this value as "auto" to
have Document Conversion Service optimize the number of documents in parallel based on your
computer's capabilities.

3. The NumberOfPrinters controls the size of the Document Conversion Service printer pool.
For optimal performance the size of the printer pool needs to match the
NumberOfDocumentsInParallel setting. This value can also be left to "auto".

4. Save the edited file. If Document Conversion Service is running you will need to restart the
conversion service to apply your new changes.

General Configuration Section - modified

 <!-- General configuration options-->
 <General>
 <Settings>
 <!-- Maximum number of printers and threads is determined by your license model. -->
 <add Name="NumberOfPrinters" Value="3"/>
 <add Name="NumberOfDocumentsInParallel" Value="3"/>
 ...

 </Settings>
</General>

Restoring the Configuration File

A backup copy of the original configuration file is stored in the following location for easy recovery.

Configuration file location:

C:\Program Files\Document Conversion Service 3.0\Core\Backup\PNJobItemProcessor.exe.config

524

Document Conversion Service 3.0

Advanced Configuration

Document Conversion Service Startup and Shutdown

Document Conversion Service Startup and Shutdown

The settings below control the startup and shutdown behavior of Document Conversion Service.

In most cases the values provided will be sufficient and will not need to be changed.

Setting Name Value

RunSelfHealForCoreServices Detects proper installation of required
components and will attempt to self-heal if any
components are found missing. This check is
always performed by default. We do not
recommend disabling this check.

RunSelfHealForOtherServices Optional detection and self-heal of secondary
components; detects proper installation and
will attempt to self-heal if any components are
found missing. This check is performed by
default.

ThreadInitBeforeSignalRunningState How long to wait for the converter factory
threads to initialize and be ready to process
documents.

MaxWaitForProcessingTimeoutInMinutes The maximum amount of time, in minutes, to
wait for a document to signal that it is being
converted. The minimum timeout is 5 minutes,
the default is 30 minutes.

SessionWaitForAllJobsCompletedTimeout The maximum amount of time to wait for all
documents to finish printing when shutting
Document Conversion Service down. This
setting is also documented in Document
Conversion Service Printer Pool.

WaitForSrv10ToClose The Document Conversion Service uses the
PNSrv10 component and cannot close until
that component has exited first. The default
amount of time to wait is 60 seconds, this
component normally exits in just over 30
seconds.

RestartServiceInHours When set to the default value of 0, the
Document Conversion Service is never
restarted. If desired, the service can be set to
be automatically restarted anywhere from
every hour up to every seven days (168
hours).

Document Conversion Service 3.0

525 Advanced Configuration

Document Conversion Service Startup and Shutdown

Changing the Service Behavior

In most cases you will never need to change any of the default values set above upon install. If you do,
make sure you keep a backup of your original settings.

Opening the Configuration File

Go to Start - All Programs - PEERNET Document Conversion Service 3.0 - Edit
DCS Configuration File to edit the configuration file using the DCS Editor. The configuration file
can also be opened in any XML editor and can be found here:

Configuration file location:

C:\Program Files\Document Conversion Service 3.0\Core\PNJobItemProcessor.exe.config

Changing the Service Behavior Values

These values are set in the general application settings section.

1. If you need to set the Document Conversion Service service to be restarted automatically, you can
change the RestartServiceInHours setting.

2. The SessionWaitForAllJobsCompletedTimeout value is used when the Document
Conversion Service is shutting down. This is the maximum amount of time to wait for all printing
documents in the pool of printers to complete.

3. Save the edited file. If Document Conversion Service is running you will need to restart the
conversion service to apply your new changes,

General Configuration Section - Service Startup & Shutdown

<General>
 <Settings>
 ...

 <add Name="SessionWaitForAllJobsCompletedTimeout" Value ="300000"/>
 <add Name="ThreadInitBeforeSignalRunningState" Value="20000"/>

 <add Name="MaxWaitForProcessingTimeoutInMinutes" Value="30"/>

 <add Name="RestartServiceInHours" Value="0"/>

 <add Name="WaitForSrv10ToClose" Value="60000"/>

 <add Name ="RunSelfHealForCoreServices" Value="true"/>
 <add Name ="RunSelfHealForOtherServices" Value="true"/>
 </Settings>
</General>

526

Document Conversion Service 3.0

Advanced Configuration

Document Conversion Service Startup and Shutdown

Restoring the Configuration File

A backup copy of the original configuration file is stored in the following location for easy recovery.

Configuration file location:

C:\Program Files\Document Conversion Service 3.0\Core\Backup\PNJobItemProcessor.exe.config

Document Conversion Service 3.0

527 Advanced Configuration

Document Conversion Service Printer Pool

Document Conversion Service Printer Pool

To perform optimally the Document Conversion Service printers in the printing pool need certain timeouts,
such as how long to wait for a printer to become available, or how long to wait for a job to appear in the
printer queue. In most cases the values provided will be sufficient and will not need to be changed.

Other settings, such as how many times to try to convert the document, or to limit how many pages can be
converted can also be set here. These settings can be overridden by the individual settings for the
converters in their <PluginFactory> section if needed.

Setting Name Value

PrintSessionWaitTimeout* How long the converter will wait to get access
to a printing session. This value is entered in
microseconds (1 second = 1000
microseconds).

PrintSessionFirstJobTimeout* This setting is applied to the printing session
used by the converter and determines how
long the printing session will wait for a job to
start spooling in the printer queue before
releasing the printing session back into the
printer pool. This value is entered in
microseconds (1 second = 1000
microseconds).

PrintSessionAvailableTimeout* This setting is applied to the printing session
used by the converter and determines how
long to wait between jobs entering the queue
before releasing the printing session back into
the printer pool.This value is entered in
microseconds (1 second = 1000
microseconds).

PrintSessionWaitOnSpoolingTimeout* How long the converter will wait for each job to
start spooling in the printer queue. This value
is entered in microseconds (1 second = 1000
microseconds).

PrintSessionWaitOnCompleteTimeout* This is NOT the total amount of time for the
document to convert, it is the amount of idle
time used to determine when to cancel a
document being created. If the converter does
not see any progress (pages being converted)
in this amount of time the document is
canceled.

SessionWaitForAllJobsCompletedTimeout The maximum amount of time to wait for all
documents to finish printing when shutting
Document Conversion Service down. This
value is entered in microseconds (1 second =
1000 microseconds).

MaxRetryAttempts* Controls the number of times to retry
converting a document if it was not successful
on printing. Minimum value is 0, meaning we
will not retry, and the maximum number of

528

Document Conversion Service 3.0

Advanced Configuration

Document Conversion Service Printer Pool

Setting Name Value

retries is 5. The default is 2.

MaxSpooledPagesAllowed* Sets the maximum number of pages that are
allowed to be printed/spooled. The default
value is 0, meaning there is no limit. If a
document exceeds this count, it enters an
error state and no file is created. To limit how
many pages to convert see the PageRange
setting in General Converter Options.

This option can also be overridden on a per
document basis using profiles as described in
Creating and Customizing Profiles.

ZeroByteFiles* Determines if files with a size of zero (0 bytes)
are skipped or failed when processed. When
set to Fail, an error is produced. When set to
Skip, the file is skipped and a message is
produced instead of an error. Default
behaviour is to fail the file.

* These settings can be overridden by the individual settings for the converters in their <PluginFactory> section if

needed.

Changing the Printer Pool Behavior

Opening the Configuration File

Go to Start - All Programs - PEERNET Document Conversion Service 3.0 - Edit
DCS Configuration File to edit the configuration file using the DCS Editor. The configuration file
can also be opened in any XML editor and can be found here:

Configuration file location:

C:\Program Files\Document Conversion Service 3.0\Core\PNJobItemProcessor.exe.config

Changing the Timeout Values

All timeout values are specified in milliseconds except for MaxWaitForProcessingTimeoutInMinutes
and RestartServiceInHours.

1. If you are converting very large documents you may need to adjust the
PrintSessionWaitOnCompleteTimeout value to a value larger than the default of
180000ms (3 minutes).

2. The SessionWaitForAllJobsCompletedTimeout value is used when the Document
Conversion Service is shutting down. This is the maximum amount of time to wait for all printing
documents in the pool of printers to complete.

3. Save the edited file. If Document Conversion Service is running you will need to restart the
conversion service to apply your new changes,

Document Conversion Service 3.0

529 Advanced Configuration

Document Conversion Service Printer Pool

General Configuration Section - Printer Pool Settings

 <General>
 <Settings>

 <!-- The following values can be overridden in the individual -->
 <!-- converter settings below for converter customization -->
 <add Name="PrintSessionWaitTimeout" Value="5000"/>
 <add Name="PrintSessionFirstJobTimeout" Value="60000"/>
 <add Name="PrintSessionAvailableTimeout" Value="250"/>
 <add Name="PrintSessionWaitOnSpoolingTimeout" Value="10000"/>
 <add Name="PrintSessionWaitOnCompleteTimeout" Value="180000"/>
 <!-- End of converter overridables -->

 <add Name="SessionWaitForAllJobsCompletedTimeout" Value ="300000"/>
 <add Name="ThreadResetSleepBeforeSignalRunningState" Value="20000"/>

 <add Name="MaxRetryAttempts" Value="2"/>
 <add Name="MaxSpooledPagesAllowed" Value="0"/>
 </Settings>
 </General>

Restoring the Configuration File

A backup copy of the original configuration file is stored in the following location for easy recovery.

Configuration file location:

C:\Program Files\Document Conversion Service 3.0\Core\Backup\PNJobItemProcessor.exe.config

530

Document Conversion Service 3.0

Advanced Configuration

Controlling the Converters

Controlling the Converters

By default Document Conversion Service automatically attempts to load all included converters. For a
converter that requires a native application to load, that application must also be installed. Each converter
also uses an application pool (multiple running instances of the application) to allow for parallel document
processing.

You can reduce the amount of resources Document Conversion Service uses by only loading the
converters for file types that you need to convert.

Applications Factories and Required Applications

Most converters use an application to print the file to the Document Conversion Service to convert
the file.

See What Files Can I Convert? for a complete list of each converter and its associated application.
If you need to use that converter you will also have the matching application installed.

The converters are each defined in their own sections in Document Conversion Service's application
configuration file. Each converter definition consists of an application factory component and a converter
factory component that uses the application factory.

The application factory component controls if the converter will be loaded and the maximum number of
instances of each application that can be running at any one time (application pooling).

It also controls when any one in-use application instance is closed and a new one started to replace it in
the pool (recycled). The recycling of an application is controlled both by number of documents processed
and by the virtual size of the running application.

The converter factory component is responsible for any custom conversion settings particular to that
converter and its application.

Document Conversion Service 3.0

531 Advanced Configuration

Controlling the Converters

The Application Factory Component

The Document Conversion Service application configuration file contains the <AppFactories> collection
of <AppFactory> items; one item for each converter. Each application factory is described in its own
<AppFactory> section using a collection of key-value pairs in the <Settings> collection.

The <AppFactories> collection also has its own <Settings> collection that is used to describe default
settings for all application factories. If any individual application factory does not contain one of the
settings the default setting from this section is used.

See Application Factory Settings for a complete list of all settings.

The Conversion Component

The Document Conversion Service application configuration file contains the <PluginFactories>
collection of <PluginFactory> items.

Each converter included has its own <PluginFactory> section and uses its matching application
factory defined in the <AppFactories> collection. Each <PluginFactory> section is described using a
collection of key-value pairs in the <Settings> collection.

The <PluginFactories> collection also has its own <Settings> collection that is used to describe
default settings for the <PluginFactory> section for each converters . If any individual <PluginFactory>
does not contain one of the settings the default setting from this section is used.

532

Document Conversion Service 3.0

Advanced Configuration

Controlling the Converters

The Application Pool

Document Conversion Service uses an application pool for each converter to provide the ability to process
multiple documents of the same type at the same time.

The application factory for each converter controls the maximum size of it's application pool through its
MaxInstances setting. This value is set to "auto" when first installed, meaning that Document Conversion
Service will automatically set the application pool size to a value appropriate to the capabilities of your
computer, and only limited by your license model. This is the recommended setting to get the best
experience from Document Conversion Service. Setting this to a value that is too high for the capabilities
of the computer can cause the computer to work very slowly.

The application pool is dynamic and self regulating. Each pool starts with a single instance at the
beginning and adds new instances, up to the maximum allowed, as they are needed to accommodate the
volume of documents of that type that are being converted.

After an application in the pool has been idle, meaning it has not been used by a converter for a set period
of time, that instance is removed from the pool, freeing up resources. This idle timeout period can be
configured if needed, or set to zero (0) to have the applications stay in the pool indefinitely. For best
performance we recommend leaving the idle timeout set to it's default of an hour.

Each application in the application pool itself can be recycled at preset intervals based on the number of
documents processed and the virtual size of the running application. This allows you to tailor the resources
used to meet the capabilities of the computer the conversion service is running on.

Application Virtual Size

To check the Virtual Size of a running application we recommend using Process Explorer from
SysInternals and adding the appropriate column. You cannot see the virtual size as a single
column on Task Manager's Process tab.

The application factory for each converter uses the following settings to control the application pool. Each
of these settings can be set individually on the <AppFactory> for each converter, or at the global
<AppFactories> level to control all converters.

Setting Value

MaxInstances The maximum size of the application pool for this
converter. For best performance leave this set to
"auto" to have the size of the application pool
tailored to the capabilities of your computer. If this
setting is not provided, or set to 0 or less, a single
application instance will be created.

The application pool is dynamic and will start with a
single application in the pool with new applications
added as needed. If an application in the pool is idle,
meaning it has not processed any conversions, for a
certain amount of time it is removed from the pool.
This is controlled by the AppTeardownIdleTimeout
setting below.

MaxRetryAttempts Controls the number of times to retry converting a
document if it was not successful on printing.

http://www.sysinternals.com

Document Conversion Service 3.0

533 Advanced Configuration

Controlling the Converters

Setting Value

Minimum value is 0, meaning we will not retry, and
the maximum number of retries is 5. The default is
2.

Setting this value in the application pool level will
override this setting in the Document Conversion
Service Printer Pool section.

MaxSpooledPagesAllowed Sets the maximum number of pages that are allowed
to be printed/spooled. The default value value is 0,
meaning there is no limit. If a document exceeds this
count, it enters an error state and no file is created.
To limit how many pages to convert see the
PageRange setting in General Converter Options.

Setting this value in the application pool level will
override this setting in the Document Conversion
Service Printer Pool section.

This option can also be overridden on a per
document basis using profiles as described in
Creating and Customizing Profiles.

RecycleThreshold Maximum number of documents each application
can process before it is recycled and a new instance
started to replace it.

This is set to 0 by default, meaning the application
doesn't recycle.

ReadyThreshold The maximum length of time to wait after the
application has been initialized before Document
Conversion Service initiates communication with the
application. This value may need to be increased for
machines running high volume with many other
applications running.

AppInitializationThreshold Some applications need more time than others to
complete their initialization. Enter in the length of
time, in microseconds, to wait for the application to
initialize.

AppTeardownIdleTimeout The amount of time, in milliseconds, to wait before an
idle application is closed and removed from the
application pool. An idle application is one that has
not processed any conversions in the specified time
period. These idle applications are removed from the
pool to free up resources. They are added back in on
demand as needed.

This is set to 3,600,000 milliseconds (1 hour) by
default in the global <AppFactories> section.

If this is set to 0, the applications in the pool will start
dynamically but will not be dynamically removed from
the pool. They will only be removed if they are

534

Document Conversion Service 3.0

Advanced Configuration

Controlling the Converters

Setting Value

recycled due to conversion failure or the settings for
RecycleThreshold, RecycleVirtualSizeThreshold,
RecycleGDIandUserHandleCountThreshold, and
RecycleProcessHandleCountThreshold.

AppSynchronousPrintModeCheckPrintQueue Some applications print synchronously, meaning
control doesn't return toDocument Conversion
Service until the file has been sent to the printer. In
some cases we need to check the printer queue to
see if the print action actually submitted a job. If it
has not we fail the conversion gracefully. This setting
is false for most applications.

RecycleVirtualSizeThreshold The size (in 1024KB blocks) at which to recycle the
application. For example, 1400000 is 1.4GB meaning
the application will be recycled when its virtual size is
larger than 1.4 GB. Is it important to keep this value
below the 2GB virtual size for 32-bit applications.
While you can disable the application recycling based
on Virtual Size by setting this to 0 or removing the
value completely, we do not recommend this.

RecycleGDIandUserHandleCountThreshold The maximum number of combined user and GDI
handles allowed for each application instance. When
this number of user and GDI handles exceed this
threshold the application will be recycled and a new
instance started to replace it in the application pool. If
this value is not set, or set to zero, the maximum
number of combined handles is 8000.

RecycleProcessHandleCountThreshold The maximum number of process handles allowed
for each application instance. When this number
exceeds this threshold the application will be recycled
and a new instance started to replace it in the
application pool. If this value is not set, or set to zero,
the maximum number of combined handles is 2000.

ZeroByteFiles Determines if files with a size of zero (0 bytes) are
skipped or failed when processed. When set to Fail,
an error is produced. When set to Skip, the file is
skipped and a message is produced instead of an
error. Default behaviour is to fail the file.

Modifying the Application Pool

As the application pool is dynamic and self-regulating, in most cases you should not need to configure
the individual instances of the application pool on a per-converter basis. If you do decide you need to,
the following steps show you how this can be done.

Opening the Configuration File

Go to Start - All Programs - PEERNET Document Conversion Service 3.0 - Edit
DCS Configuration File to edit the configuration file using the DCS Editor. The configuration file
can also be opened in any XML editor and can be found here:

Document Conversion Service 3.0

535 Advanced Configuration

Controlling the Converters

Configuration file location:

C:\Program Files\Document Conversion Service 3.0\Core\PNJobItemProcessor.exe.config

Changing the Application Pool Size

As an example, if you mainly need to convert Word and PDF documents, and only occasionally need
to convert Excel documents, you can reduce the size of the application pool for the Excel converter
and increase the pools used by the Word and PDF converters. This would give you higher throughput
on the documents you need to convert more often.

The sample below shows a possible configuration for this scenario:

· The Microsoft Word and Adobe Acrobat Reader converter will both have an application pool of
5.

· The Microsoft Excel converter has an application pool of 2.

· The default MaxInstances, if not provided in the <AppFactory> section, is auto as set in the
<Settings> section at the bottom of the <AppFactories> section. When set to auto the size of the
application pool is tailored based on the capabilities of your computer using the same formula
as Configuring Parallel Processing.

1. In the <AppFactories> section find the <AppFactory> section for the converter whose application
pool you want to adjust.

2. Set the MaxInstances value to an appropriate higher or lower value.

536

Document Conversion Service 3.0

Advanced Configuration

Controlling the Converters

AppFactories Configuration Section

<AppFactories>
 <Factories>

 <AppFactory Name="Microsoft Word"
 Type="PEERNET.PNDocConv.Applications.PNWordApplicationFactory"
 Assembly="PNWordApplicationFactory">
 <Settings>
 <add Name="Enabled" Value="auto"/>
 <add Name="MaxInstances" Value="5"/>
 <add Name="RecycleThreshold" Value="100"/>
 </Settings>
 </AppFactory>

 <AppFactory Name="Adobe Acrobat Reader"
 Type="PEERNET.PNDocConv.Applications.PNAcrobatReaderApplicationFactory"
 Assembly="PNAcrobatReaderApplicationFactory">
 <Settings>
 <add Name="Enabled" Value="auto"/>
 <add Name="MaxInstances" Value="5"/>
 </Settings>
 </AppFactory>

 <AppFactory Name="Microsoft Excel"
 Type="PEERNET.PNDocConv.Applications.PNExcelApplicationFactory"
 Assembly="PNExcelApplicationFactory">
 <Settings>
 <add Name="Enabled" Value="auto"/>
 <add Name="MaxInstances" Value="2"/>
 </Settings>
 </AppFactory>
 ...

 </Factories>
 <Settings>
 <!-- Global factory settings -->
 <add Name="MaxInstances" Value="auto"/>
 <add Name="RecycleThreshold" Value="0"/>
 <add Name="ReadyThreshold" Value="5000" />
 <add Name="AppInitializationThreshold" Value ="30000" />
 <add Name="RecycleVirtualSizeThreshold" Value="1400000"/>
 <add Name="RecycleGDIandUserHandleCountThreshold" Value="8000"/>
 <add Name="RecycleProcessHandleCountThreshold" Value="2000"/>

 <add Name="AppTeardownIdleTimeout" Value="3600000"/>

 </Settings>
</AppFactories>

Document Conversion Service 3.0

537 Advanced Configuration

Controlling the Converters

Changing the Application Recycle Count and Threshold

You can also change how often an application in the pool is recycled. Recycling an application keeps
long running applications from slowly consuming resources.

An application is recycled for three reasons:

· The RecycleThreshold for the number of document processed by this instance has been met.

· The RecycleVirtualSizeThreshold value for the virtual size of the running application has been
exceeded.

· If a file fails to convert Document Conversion Service will automatically recycle the application.
This cannot be changed.

The sample below shows a possible configuration for the following:

· The Microsoft Word converter will be recycled after 100 documents or if the application's virtual
size exceeds the 1.7GB limit set in the global settings section at the end of the <AppFactories>
section

· The Adobe Acrobat Reader converter has a custom RecycleVirtualSizeThreshold of 1GB but it
does not have a setting for RecycleThreshold. It will default to the RecycleThreshold value of
200 in the global settings section at the end of the <AppFactories> section.

538

Document Conversion Service 3.0

Advanced Configuration

Controlling the Converters

1. In the <AppFactories> section look for the <AppFactory> section for the converter whose recycle
count or size threshold you want to adjust.

a. Set the RecycleThreshold to the desired value. Take care when adjusting this value too
low as recycling an application takes time; recycling too often will decrease the throughput and
the Document Conversion Service will spend too much time stopping and restarting the
application.

b. Set the RecycleVirtualSizeThreshold value to the desired size. This value is specified in
1024KB blocks (1=1024KB).

2. You can change the global RecycleThreshold and RecycleVirtualSizeThreshold for all
converters in the <Settings> section at the bottom of the <AppFactories> section. These values will
be used if they are not specified in the converters' <AppFactory> section.

AppFactories Configuration Section

<AppFactories>
 <Factories>

 <AppFactory Name="Microsoft Word"
 Type="PEERNET.PNDocConv.Applications.PNWordApplicationFactory"
 Assembly="PNWordApplicationFactory">
 <Settings>
 <add Name="Enabled" Value="auto"/>
 <add Name="MaxInstances" Value="3"/>
 <add Name="RecycleThreshold" Value="100"/>
 </Settings>
 </AppFactory>

 <AppFactory Name="Adobe Acrobat Reader"
 Type="PEERNET.PNDocConv.Applications.PNAcrobatReaderApplicationFactory"
 Assembly="PNAcrobatReaderApplicationFactory">
 <Settings>
 <add Name="Enabled" Value="auto"/>
 <add Name="MaxInstances" Value="3"/>
 <add Name="RecycleVirtualSizeThreshold" Value="100000"/>
 </Settings>
 </AppFactory>

 ...

 </Factories>
 <Settings>
 <!-- Global factory settings -->
 <add Name="MaxInstances" Value="3"/>
 <add Name="RecycleThreshold" Value="200"/>
 <add Name="RecycleVirtualSizeThreshold" Value="1700000"/>
 </Settings>
</AppFactories>

Document Conversion Service 3.0

539 Advanced Configuration

Controlling the Converters

Restoring the Configuration File

A backup copy of the original configuration file is stored in the following location for easy recovery.

Configuration file location:

C:\Program Files\Document Conversion Service 3.0\Core\Backup\PNJobItemProcessor.exe.config

540

Document Conversion Service 3.0

Advanced Configuration

Controlling the Converters

Enabling and Disabling Converters

The application factory for each converter controls if that converter will be loaded or not through its
Enabled setting. The Enabled setting can be one of three values:

Enabled Result

auto When set to auto, Document Conversion Service will check the converter's
requirements, and load it only if the requirements are met. In most cases the
requirements are usually the native application the converter uses to help do
the conversion.

true Document Conversion Service will always try to load the converter. If the
converter requires a separate application and that application is not installed
this setting will cause Document Conversion Service to fail its initialization
and the service will not start.

false The converter is not loaded.

Opening the Configuration File

Go to Start - All Programs - PEERNET Document Conversion Service 3.0 - Edit
DCS Configuration File to edit the configuration file using the DCS Editor. The configuration file
can also be opened in any XML editor and can be found here:

Configuration file location:

C:\Program Files\Document Conversion Service 3.0\Core\PNJobItemProcessor.exe.config

Enabling or Disabling the Converters through the Application Factory

The sample below shows how to disable the converter for Microsoft Word.

1. In the <AppFactories> section, look for the <AppFactory> section for the converter you want to
disable.

2. Set the Enabled value to false to disable the converter.

a. Set this value to true to always load the converter or auto the have Document Conversion
Service automatically detect if the converter can be used.

Document Conversion Service 3.0

541 Advanced Configuration

Controlling the Converters

AppFactories Configuration Section

<AppFactories>
 <Factories>

 <AppFactory Name="Microsoft Word"
 Type="PEERNET.PNDocConv.Applications.PNWordApplicationFactory"
 Assembly="PNWordApplicationFactory">
 <Settings>
 <add Name="Enabled" Value="false"/>
 <add Name="MaxInstances" Value="5"/>
 <add Name="RecycleThreshold" Value="1000"/>
 </Settings>
 </AppFactory>

 <AppFactory Name="Adobe Acrobat Reader"
 Type="PEERNET.PNDocConv.Applications.PNAcrobatReaderApplicationFactory"
 Assembly="PNAcrobatReaderApplicationFactory">
 <Settings>
 <add Name="Enabled" Value="auto"/>
 <add Name="MaxInstances" Value="2"/>
 </Settings>
 </AppFactory>

 ...

 </Factories>
 <Settings>
 <!-- Global factory settings -->
 <add Name="MaxInstances" Value="5"/>
 <add Name="RecycleThreshold" Value="100"/>
 </Settings>
</AppFactories>

Restoring the Configuration File

A backup copy of the original configuration file is stored in the following location for easy recovery.

Configuration file location:

C:\Program Files\Document Conversion Service 3.0\Core\Backup\PNJobItemProcessor.exe.config

542

Document Conversion Service 3.0

Advanced Configuration

Controlling the Converters

Custom Converter Behaviour

When printing documents, some converters may require more or less time than others at certain stages of
the printing process. For instance, some applications may need more time to spool the document to the
printer than others, or a particular converter is handling files that are consistently larger and need more
time to complete. These settings are normally set globally in the Document Conversion Service Printer
Pool section but can also be overridden on a per-converter basis if needed.

The converter factory for each converter uses the following settings to control the printing timeouts:

Setting Name Value

COMRetryLaterMaxTimeout Sets a time limit, in milliseconds, on how long to retry
Office automation COM calls when automating
returns the error
RPC_E_SERVERCALL_RETRYLATER. Currently
used only by Excel and should never need to be
modified. The default value is 2000ms.

PrintSessionWaitTimeout How long the converter factory will wait to get access
to a printing session.

PrintSessionFirstJobTimeout This setting is applied to the printing session used by
the converter factory and determines how long the
printing session will wait for a job to start spooling in
the printer queue after a document is printed before
releasing the printing session back into the printer
pool.

PrintSessionAvailableTimeout This setting is applied to the printing session used by
the converter factory and determines how long to
wait between jobs entering the queue before
releasing the printing session back into the printer
pool.

PrintSessionWaitOnSpoolingTimeout How long the converter factory will wait for each job
to start spooling in the printer queue.

PrintSessionWaitOnCompleteTimeout The maximum amount of time the converter factory
will wait for the document to finish printing in the
printer queue.

UsesPrintingProtocol This is true for all converter factories that print to the
Document Conversion Service to convert the
document, false for any converter factories that do
not use the printer. In most cases this setting never
needs to be modified.

MaxRetryAttempts Controls the number of times to retry converting a
document if it was not successful on printing.
Minimum value is 0, meaning we will not retry, and
the maximum number of retries is 5. The default is
2.

Setting this value in the converter settings will
override this setting if set in the The Application Pool
or in the Document Conversion Service Printer Pool
section.

Document Conversion Service 3.0

543 Advanced Configuration

Controlling the Converters

Setting Name Value

MaxSpooledPagesAllowed Sets the maximum number of pages that are allowed
to be printed/spooled. The default value is 0,
meaning there is no limit. If a document exceeds this
count, it enters an error state and no file is created.
To limit how many pages to convert see the
PageRange setting in General Converter Options.

Setting this value in the converter settings will
override this setting if set in the The Application Pool
or in the Document Conversion Service Printer Pool
section.

This option can also be overridden on a per
document basis using profiles as described in
Creating and Customizing Profiles.

ZeroByteFiles Determines if files with a size of zero (0 bytes) are
skipped or failed when processed. When set to Fail,
an error is produced. When set to Skip, the file is
skipped and a message is produced instead of an
error. Default behaviour is to fail the file.

These variables control the maximum amount of time to wait on the open and close calls to the converter
to ensure the conversion threads are not blocked by the underlying application. These values are entered
in microseconds (1 second = 1000 microseconds). If not specified the default value is 60000ms, and can
be no smaller than 20000ms.

Setting Name Value

DocumentOpenTimeout The maximum amount of time to wait for the
converter to open the document.

DocumentConvertTimeout The maximum amount of time to wait for the
converter to convert the document

DocumentCloseTimeout The maximum amount of time to wait for the
converter to close the open document.

DocumentCloseAllTimeout The maximum amount of time to wait for the
converter to close all open documents.

ApplicationCloseTimeout The maximum amount of time to wait for the
application to close.

Changing the Converter Timeouts

In most cases these timeouts should not have to be changed from the defaults provided.

Opening the Configuration File

Go to Start - All Programs - PEERNET Document Conversion Service 3.0 - Edit
DCS Configuration File to edit the configuration file using the DCS Editor. The configuration file
can also be opened in any XML editor and can be found here:

544

Document Conversion Service 3.0

Advanced Configuration

Controlling the Converters

Configuration file location:

C:\Program Files\Document Conversion Service 3.0\Core\PNJobItemProcessor.exe.config

Configuring Converter Factories

The sample below shows both the Microsoft Word and Adobe Acrobat Reader converter factory
definitions. The Adobe Acrobat Reader converter shown is overriding the
PrintSessionWaitOnSpoolingTimeout with a timeout value of 10000ms (10 seconds). Both
converters will use the UsesPrintingProtocol setting of true as defined in the global settings
section as they

1. In the <PluginFactories> section, look for the <PluginFactory> section for the converter whose
timeouts you want to adjust.

2. Set new timeouts as desired.

PluginFactories Configuration Section

<PluginFactories>
 <Factories>
 <PluginFactory Name="Microsoft Word"
 Type="PEERNET.PNDocConv.Converters.PNWordConverter"
 Assembly="PNWordConverter" AppFactory="Microsoft Word">
 <Settings>
 <!-- Add custom converter settings here -->
 </Settings>
 </PluginFactory>

 <PluginFactory Name="Adobe Acrobat Reader"
 Type="PEERNET.PNDocConv.Converters.PNAcrobatReaderConverter"
 Assembly="PNAcrobatReaderConverter"
 AppFactory="Adobe Acrobat Reader">
 <Settings>
 <!-- Add any custom converter settings here -->
 <add Name="PrintSessionWaitOnSpoolingTimeout" Value="10000"/>
 </Settings>
 </PluginFactory>

 </Factories>
 <Settings>
 <!-- Global converter factory settings-->
 <add Name="UsesPrintingProtocol" Value="true"/>
 </Settings>
</PluginFactories>

Restoring the Configuration File

A backup copy of the original configuration file is stored in the following location for easy recovery.

Configuration file location:

C:\Program Files\Document Conversion Service 3.0\Core\Backup\PNJobItemProcessor.exe.config

Document Conversion Service 3.0

545 Advanced Configuration

Changing Document Conversion Service's Startup Mode

Changing Document Conversion Service's Startup Mode

Document Conversion Service is managed by the PEERNET Document Conversion Service Monitor 1.0
service. This monitoring service is installed as an automatic service with a delayed start. This means that
each time the computer is started, the monitoring service will start Document Conversion Service after a
short delay. While not recommended, this can be changed through the service's control panel applet.

Changing the Service's Start Mode

1. Go to Start - Control Panel - System and Security - Administrative Tools -
Services (or type "Services" into the search field on the Start menu).

2. In the Services control panel applet select the PEERNET Document Conversion Service Monitor
1.0 service. The service can be running, but any changes will not take place until the service is
restarted.

3. Double-click the service in the list to open the Properties dialog.

4. On the General tab change the Startup type to the desired mode.

546

Document Conversion Service 3.0

Advanced Configuration

Changing Document Conversion Service's Startup Mode

Document Conversion Service 3.0

547 Appendix

Appendix

· General Application Settings - all settings used to define the application configuration, such as
number of documents converted in parallel.

· Application Factory Settings - lists all application factory settings

· Converter Factory Settings - lists all converter factory settings.

548

Document Conversion Service 3.0

Appendix

General Application Settings

General Application Settings

These options control the number of documents that can be converted concurrently. This is limited by your
license model and your available system resources such as CPU and memory.

Setting Name Value

NumberOfDocumentsInParallel Number of documents that can be converted
at the same time. Set to "auto" to use the
system resources to automatically determine
an appropriate value.

NumberOfPrinters Controls the size of the Document Conversion
Service printer pool. This value should match
NumberOfDocumentsInParallel for best
performance.

These variables control the overall behavior of the Document Conversion Service.

Setting Name Value

RunSelfHealForCoreServices Detects proper installation of required
components and will attempt to self-heal if any
components are found missing. This check is
always performed by default. We do not
recommend disabling this check.

RunSelfHealForOtherServices Optional detection and self-heal of secondary
components; detects proper installation and
will attempt to self-heal if any components are
found missing. This check is performed by
default.

ThreadInitBeforeSignalRunningState How long to wait for the converter factory
threads to initialize and be ready to process
documents.

MaxWaitForProcessingTimeoutInMinutes The maximum amount of time, in minutes, to
wait for a document to signal that it is being
converted. The minimum timeout is 5 minutes,
the default is 30 minutes.

SessionWaitForAllJobsCompletedTimeout The maximum amount of time to wait for all
documents to finish printing when shutting
Document Conversion Service down.

WaitForSrv10ToClose The Document Conversion Service uses the
PNSrv10 component and cannot close until
that component has exited first. The default
amount of time to wait is 60 seconds, this
component normally exits in just over 30
seconds.

RestartServiceInHours When set to the default value of 0, the
Document Conversion Service is never
restarted. If desired, the service can be set to
be automatically restarted anywhere from

Document Conversion Service 3.0

549 Appendix

General Application Settings

Setting Name Value

every hour up to every seven days (168
hours).

These variables control the maximum amount of time to wait on the open and close calls to the converter
to ensure the conversion threads are not blocked by the underlying application. These values are entered
in microseconds (1 second = 1000 microseconds). If not specified the default value is 60000ms, and can
be no smaller than 20000ms. Any marked with (*) can be overridden by the converter factory if needed
(see Converter Factory Settings).

Setting Name Value

DocumentOpenTimeout* The maximum amount of time to wait for the
converter to open the document.

DocumentConvert* The maximum amount of time to wait for the
converter to convert the document

DocumentCloseTimeout* The maximum amount of time to wait for the
converter to close the open document.

DocumentCloseAllTimeout* The maximum amount of time to wait for the
converter to close all open documents.

ApplicationCloseTimeout* The maximum amount of time to wait for the
application to close.

The following variables control the behavior of the Document Conversion Service printer pool such as how
long to wait for a printer to become available. Any marked with (*) can be overridden by the converter
factory if needed (see Converter Factory Settings).

Setting Name Value

PrintSessionWaitTimeout* How long the converter will wait to get access
to a printing session. This value is entered in
microseconds (1 second = 1000
microseconds).

PrintSessionFirstJobTimeout* This setting is applied to the printing session
used by the converter and determines how
long the printing session will wait for a job to
start spooling in the printer queue before
releasing the printing session back into the
printer pool. This value is entered in
microseconds (1 second = 1000
microseconds).

PrintSessionAvailableTimeout* This setting is applied to the printing session
used by the converter and determines how
long to wait between jobs entering the queue
before releasing the printing session back into
the printer pool.This value is entered in
microseconds (1 second = 1000
microseconds).

550

Document Conversion Service 3.0

Appendix

General Application Settings

Setting Name Value

PrintSessionWaitOnSpoolingTimeout* How long the converter will wait for each job to
start spooling in the printer queue. This value
is entered in microseconds (1 second = 1000
microseconds).

PrintSessionWaitOnCompleteTimeout* This is NOT the total amount of time for the
document to convert, it is the amount of idle
time used to determine when to cancel a
document being created. If the converter does
not see any progress (pages being converted)
in this amount of time the document is
canceled.

SessionWaitForAllJobsCompletedTimeout The maximum amount of time to wait for all
documents to finish printing when shutting
Document Conversion Service down. This
value is entered in microseconds (1 second =
1000 microseconds).

MaxRetryAttempts* Controls the number of times to retry
converting a document if it was not successful
on printing. Minimum value is 0, meaning we
will not retry, and the maximum number of
retries is 5. The default is 2.

MaxSpooledPagesAllowed* Sets the maximum number of pages that are
allowed to be printed/spooled. The default
value is 0, meaning there is no limit. If a
document exceeds this count, it enters an
error state and no file is created. To limit how
many pages to convert see the PageRange
setting in General Converter Options.

This option can also be overridden on a per
document basis using profiles as described in
Creating and Customizing Profiles.

ZeroByteFiles* Determines if files with a size of zero (0 bytes)
are skipped or failed when processed. When
set to Fail, an error is produced. When set to
Skip, the file is skipped and a message is
produced instead of an error. Default
behaviour is to fail the file.

* These settings can be overridden by the individual settings for the converters in their <PluginFactory> section if

needed.

Document Conversion Service 3.0

551 Appendix

Application Factory Settings

Application Factory Settings

These settings can be used in both the application factory settings collection and in the global application
factory settings collection. Settings in the application factory will override the global default settings.

Setting Value

Enabled Set to auto to automatically try and start the
converter, true to enable the converter and make it
required, and false to disable it.

MaxInstances The maximum size of the application pool for this
converter. For best performance leave this set to
"auto" to have the size of the application pool
tailored to the capabilities of your computer. If this
setting is not provided, or set to 0 or less, a single
application instance will be created.

The application pool is dynamic and will start with
a single application in the pool with new
applications added as needed. If an application in
the pool is idle, meaning it has not processed any
conversions, for a certain amount of time it is
removed from the pool. This is controlled by the
AppTeardownIdleTimeout setting below.

MaxRetryAttempts Controls the number of times to retry converting a
document if it was not successful on printing.
Minimum value is 0, meaning we will not retry, and
the maximum number of retries is 5. The default is
2.

Setting this value in the application pool level will
override this setting in the Document Conversion
Service Printer Pool section.

MaxSpooledPagesAllowed Sets the maximum number of pages that are
allowed to be printed/spooled. The default value
value is 0, meaning there is no limit. If a document
exceeds this count, it enters an error state and no
file is created. To limit how many pages to convert
see the PageRange setting in General Converter
Options.

Setting this value in the application factory level
will override this setting in the General Application
Settings section.

This option can also be overridden on a per
document basis using profiles as described in
Creating and Customizing Profiles.

RecycleThreshold Maximum number of documents each application
can process before it is recycled and a new
instance started to replace it.

552

Document Conversion Service 3.0

Appendix

Application Factory Settings

Setting Value

This is set to 0 by default, meaning the application
will not recycle.

ReadyThreshold The maximum length of time to wait after the
application has been initialized before Document
Conversion Service initiates communication with
the application. This value may need to be
increased for machines running high volume with
many other applications running.

AppInitializationThreshold Some applications need more time than others to
complete their initialization. Enter in the length of
time, in microseconds, to wait for the application to
initialize.

AppTeardownIdleTimeout The amount of time, in milliseconds, to wait before
an idle application is closed and removed from the
application pool. An idle application is one that has
not processed any conversions in the specified
time period. These idle applications are removed
from the pool to free up resources. They are
added back in on demand as needed.

This is set to 3,600,000 milliseconds (1 hour) by
default in the global <AppFactories> section.

If this is set to 0, the applications in the pool will
start dynamically but will not be dynamically
removed from the pool. They will only be removed
if they are recycled due to conversion failure or the
settings for RecycleThreshold,
RecycleVirtualSizeThreshold,
RecycleGDIandUserHandleCountThreshold,
and RecycleProcessHandleCountThreshold.

AppSynchronousPrintModeCheckPrintQueue Some applications print synchronously, meaning
control doesn't return toDocument Conversion
Service until the file has been sent to the printer.
In some cases we need to check the printer queue
to see if the print action actually submitted a job. If
it has not we fail the conversion gracefully. This
setting is false for most applications.

RecycleVirtualSizeThreshold The size (in 1024KB blocks) at which to recycle
the application. For example, 1400000 is 1.4GB
meaning the application will be recycled when its
virtual size is larger than 1.4 GB. Is it important to
keep this value below the 2GB virtual size for 32-
bit applications. While you can disable the
application recycling based on Virtual Size by
setting this to 0 or removing the value completely,
we do not recommend this.

RecycleGDIandUserHandleCountThreshold The maximum number of combined user and GDI
handles allowed for each application instance.
When this number of user and GDI handles

Document Conversion Service 3.0

553 Appendix

Application Factory Settings

Setting Value

exceed this threshold the application will be
recycled and a new instance started to replace it in
the application pool. If this value is not set, or set
to zero, the maximum number of combined
handles is 8000.

RecycleProcessHandleCountThreshold The maximum number of process handles allowed
for each application instance. When this number
exceeds this threshold the application will be
recycled and a new instance started to replace it in
the application pool. If this value is not set, or set
to zero, the maximum number of combined
handles is 2000.

ZeroByteFiles Determines if files with a size of zero (0 bytes) are
skipped or failed when processed. When set to
Fail, an error is produced. When set to Skip, the
file is skipped and a message is produced instead
of an error. Default behaviour is to fail the file.

These settings are used for development purposes only. They should not be used in a production system.

Setting Name Value

RunVisible This flag should be false or removed
completely on a production system.
Not recommended when Starting and
Stopping the Service.

Used for development purposes only.
If the application can be run visible,
and not all can be, it is shown on
screen.

554

Document Conversion Service 3.0

Appendix

Converter Factory Settings

Converter Factory Settings

These settings can be used in both the converter factory settings collection and in the global converter
factory settings collection. Settings in the converter factory will override the global default settings.

Setting Name Value

UsesPrintingPro
tocol

This is true for all converter factories that print to the Document Conversion Service
to convert the document, false for any converter factories that do not use the printer.
In most cases this setting never needs to be modified.

COMRetryLater
MaxTimeout

Sets a time limit, in milliseconds, on how long to retry Office automation COM calls
when automating returns the error RPC_E_SERVERCALL_RETRYLATER. Currently
used only by Excel and should never need to be modified. The default value is
2000ms.

These settings are normally only set in the General Application Settings section of the application
configuration file but can be overridden as needed in the individual converter factory settings.

Setting Name Value

PrintSessionWaitTimeout How long the converter will wait to get access to a
printing session.

PrintSessionFirstJobTimeout This setting is applied to the printing session used by
the converter and determines how long the printing
session will wait for a job to start spooling in the
printer queue after a document is printed before
releasing the printing session back into the printer
pool

PrintSessionAvailableTimeout This setting is applied to the printing session used by
the converter and determines how long to wait
between jobs entering the queue before releasing the
printing session back into the printer pool.

PrintSessionWaitOnSpoolingTimeout How long the converter will wait for each job to start
spooling in the printer queue.

PrintSessionWaitOnCompleteTimeout This is NOT the total amount of time for the document
to convert, it is the amount of idle time used to
determine when to cancel a document being created.
If the converter does not see any progress (pages
being converted) in this amount of time the document
is canceled.

MaxRetryAttempts Controls the number of times to retry converting a
document if it was not successful on printing.
Minimum value is 0, meaning we will not retry, and the
maximum number of retries is 5. The default is 2.

Setting this value in the converter settings will override
this setting if set in the The Application Pool or in the
Document Conversion Service Printer Pool section.

MaxSpooledPagesAllowed Sets the maximum number of pages that are allowed
to be printed/spooled. The default value value is 0,

Document Conversion Service 3.0

555 Appendix

Converter Factory Settings

Setting Name Value

meaning there is no limit. If a document exceeds this
count, it enters an error state and no file is created. To
limit how many pages to convert see the PageRange
setting in General Converter Options.

Setting this value in the converter settings will override
this setting if it is set in either Application Factory
Settings or in the General Application Settings section.

This option can also be overridden on a per document
basis using profiles as described in Creating and
Customizing Profiles.

ZeroByteFiles Determines if files with a size of zero (0 bytes) are
skipped or failed when processed. When set to Fail,
an error is produced. When set to Skip, the file is
skipped and a message is produced instead of an
error. Default behaviour is to fail the file.

These variables control the maximum amount of time to wait on the open and close calls to the converter
to ensure the conversion threads do not blocked by the underlying application. These values is entered in
microseconds (1 second = 1000 microseconds). If not specified the default value is 60000ms, and can be
no smaller than 20000ms.

Setting Name Value

DocumentOpenTimeout The maximum amount of time to wait for the
converter to open the document.

DocumentConvertTimeout* The maximum amount of time to wait for the
converter to convert the document.

DocumentCloseTimeout The maximum amount of time to wait for the
converter to close the open document.

DocumentCloseAllTimeout The maximum amount of time to wait for the
converter to close all open documents.

ApplicationCloseTimeout The maximum amount of time to wait for the
application to close.

	Welcome to Document Conversion Service
	Legal Notices
	System Requirements

	Installing Document Conversion Service Silently
	Updating Document Conversion Service to a New Version
	Editing Files with the DCS Editor
	How to Backup and Restore Configuration Files and Profiles
	During the Installation Process
	Using the Backup and Restore Tool
	Manually Backup and Restore the Files
	Using the Configuration Merge Tool

	Activating the Document Conversion Service
	Launching the Activation Status Dialog
	Entering Your Serial Number
	Entering Your User Information
	Validating Your Information
	Manually Activating Document Conversion Service
	Activation Status Results
	Viewing Your Activation Status

	Working With Document Conversion Service
	The DCSAdmin Account
	What Files Can I Convert?
	The System Tray Icon
	The Logging Console
	Starting and Stopping the Service

	Configuring Third-Party Applications Used by Document Conversion Service
	Adobe Reader for Foreign Languages
	Configuring Flash for Adobe Reader
	Autodesk Design Review
	Setting the Ghostscript Version
	Vector PDF with Office 2007
	Microsoft Outlook
	Outside-In AX
	Windows Imaging Component (WIC) Add-Ons and Extensions
	Internet Explorer

	Converting Files with Document Conversion Service
	The Convert File Application
	The Drop Files Converter Desktop Application
	Command Line Utilities
	DCSCreateFileList
	DCSExtractResults
	DCSCombineFiles
	DCSCombineFolder
	DCSConvertFolder
	DCSConvertFileList
	DCSConvertFile
	DCSLicenseDaysLeft

	The Watch Folder Service
	Watch Folder Service Overview
	Starting and Stopping the Watch Folder Service
	Configure the Watch Folder Service
	Long Path Name Support

	High Performance Clustering and Fail Over Conversion
	Processing Outlook and EML Mail Messages and Attachments
	Creating Done Files to Signal Completion
	Control Sort Order on File Pickup
	Post-Conversion Processing
	Unique File Naming and Flat Folder Structures
	Skipping Files with the Passthrough Converter
	Large Volume Batch Conversion Using Clustering
	Large Volume Batch Conversion Using Synchronous File Pickup

	Converting With PEERNET.ConvertUtility
	Requirements
	Getting Started
	C# Tutorial
	Visual Basic .NET Tutorial
	Using the Results Object

	Working With PEERNET.ConvertUtility
	Passing Custom Conversion Settings
	Converting a Folder of Files
	Converting a List of Files
	Combining a List of Files
	Combining a Folder of Files
	Combining Select Pages Of Each File
	Converting Files with Long Path Names
	Controlling Parallel Document Conversion
	Controlling the Failed Results File Location
	Controlling the SmartInspect Logging Files
	Waiting for Document Conversion Service to be Ready to Convert

	Deploying Applications
	PEERNET.ConvertUtility Namespace
	PNConverter
	Methods
	ConvertFile
	ConvertFileList
	ConvertFolder
	CombineFiles
	CombineFolder
	IsConversionServiceRunning

	PNConvertFileInfo
	Methods
	AddSetting
	PNConvertFileInfo

	Properties
	InputFile
	OutputPath
	Settings

	PNConversionItem
	Methods
	DeserializeFromXML
	GetConversionStatus
	GetCreatedFiles
	GetErrors
	GetSourceFileName
	HasErrors
	SerializeToXML

	Properties
	ConversionResult
	ConversionLogFilePath
	ConversionResultsFilePath
	ConverterPlugInList
	OutputBaseName
	OutputDirectory
	Settings
	SourceFileExtension
	SourceFileMimeType
	SourceFilePath

	PNCombineItem
	Methods
	DeserializeFromXML
	GetCreatedFiles
	GetErrors
	GetInputFileNames
	HasErrors
	SerializeToXML

	Properties
	CombinedOutputFileList
	ConversionItems
	ConversionLogFilePath
	ConversionResultsFilePath
	Errors
	InputFiles
	OutputBaseName
	OutputDirectory
	Settings

	PNConversionResult
	Properties
	Completed
	ConverterPlugInUsed
	Errors
	Messages
	OutputFiles
	PrintJobPrintedPages
	OutputFileRenderedPages
	PrintJobs
	Submitted

	PNConversionResultError
	Properties
	Value

	PNConversionResultMessage
	Properties
	Value

	PNConversionResultOutputFile
	Methods
	GetOutputFileRenderedPages
	GetPrintJobPrintedPages
	GetPrintJobs

	Properties
	OutputFilePath

	PNConversionResultOutputFileRenderedPage
	Methods
	GetOutputFile
	GetPrintJobPrintedPages
	GetPrintJobs

	Properties
	BitsPerPixel
	HeightInPixels
	Orientation
	PageNumber
	RotationInDegrees
	WidthInPixels
	XPixelsPerInch
	YPixelsPerInch

	PNConversionResultPrintJob
	Methods
	GetOutputFiles
	GetPrintJobPrintedPages

	Properties
	BytesPrinted
	BytesSpooled
	GUID
	JobId
	PagesPrinted
	PagesSpooled
	Status
	StatusMessage
	Submitted
	Title
	UserName

	PNConversionResultPrintJobPrintedPage
	Methods
	GetOutputFileRenderedPages
	GetOutputFiles
	GetPrintJob

	Properties
	BitsPerPixel
	HeightInPixels
	Orientation
	PageNumber
	Skipped
	WidthInPixels
	XPixelsPerInch
	YPixelsPerInch

	PNProfile
	Methods
	GetListofProfileNames

	Enumerations
	PNProfileSearchLocation

	PNSetting
	Methods
	PNSetting

	Properties
	Name
	Value

	Enumerations
	PNConvertResultStatus
	PNFileSortMode
	PNFileSortOrder

	Setting up Client-Server Conversion
	Setting up the Server
	Setting up the Client
	Setting up a Client-Server Watch Folder

	Microsoft IIS and Document Conversion Service
	Conversion Settings
	Creating and Customizing Profiles
	File Extension to Converter Mapping
	General Converter Options
	Endorsement Options
	Endorsement Formatting Codes

	Word Converter Options
	Excel Converter Options
	PowerPoint Converter Options
	Adobe Reader Options
	Internet Explorer Options
	Ghostscript Converter Options
	Image Converter Options
	OutsideIn AX Options
	Save
	Devmode settings
	Advanced File Naming
	Image Options
	TIFF File Format
	PDF File Format
	PDF Security
	JPEG File Format
	Processing
	Advanced Features
	Watermark Stamping

	Advanced Configuration
	Configuring Parallel Processing
	Document Conversion Service Startup and Shutdown
	Document Conversion Service Printer Pool
	Controlling the Converters
	The Application Pool
	Enabling and Disabling Converters
	Custom Converter Behaviour

	Changing Document Conversion Service's Startup Mode

	Appendix
	General Application Settings
	Application Factory Settings
	Converter Factory Settings

